Skip to main content

Advertisement

Log in

Conservation genetics of three flightless beetle species in southern California

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

Regional scale conservation decisions can be aided by information on the distribution of intraspecific diversity, especially the extent to which patterns are common to multiple species. We compare patterns of intraspecific mitochondrial cytochrome oxidase I (COI) variation among three flightless beetles (Coleoptera: Tenebrionidae: Nyctoporis carinata LeConte; Staphylinidae: Sepedophilus castaneus (Horn); Carabidae: Calathus ruficollis Dejean) in the southern part of the California Floristic Province biodiversity hotspot. All species exhibit moderate to high levels of total variation, ranging from 2% to 10% (maximum uncorrected distance). Most populations of all species exhibit unique haplotypes, but few populations’ haplotypes constitute exclusive clades. Many adjacent pairs of populations show indications of some, though limited, genetic connectedness, due either to gene flow or ancestral polymorphism. However, in most cases this diminishes sharply over greater distances. By both statistical and phylogenetic measures, Sierra Nevadan populations are highly distinct from those in the coast and transverse ranges. Among the latter, the eastern transverse ranges are generally most unique and isolated, with diversity in the western parts of these ranges showing fewer barriers. Otherwise, few measures agree on areas of highest conservation value, and overall patterns tend to be species-specific.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bolger DT, Suarez AV, Crooks KR, Morrison SA, Case TJ (2000) Arthropods in urban habitat fragments in southern California: area, age, and edge effects. Ecol Applic 10:1230–1248

    Article  Google Scholar 

  • Bond JE (2004) Systematics of the Californian euctenizine spider genus Apomastus (Araneae: Mygalomorphae: Cyrtaucheniidae): the relationship between molecular and morphological taxonomy. Invertebr Syst 18:361–376

    Article  CAS  Google Scholar 

  • Calsbeek R, Thompson JN, Richardson JE (2003) Patterns of molecular evolution and diversification in a biodiversity hotspot: the California Floristic Province. Mol Ecol 12:1021–1029

    Article  PubMed  CAS  Google Scholar 

  • Casgrain P (2001) Permute! v3.4α9. University of Montreal, Montreal

    Google Scholar 

  • Caterino MS (2006) California beetle faunistics: 100 years after Fall. Coleopt Bull 60:177–191

    Article  Google Scholar 

  • Caterino MS, Cho S, Sperling FAH (2000) The current state of insect molecular systematics: a thriving Tower of Babel. Annu Rev Entomol 45:1–54

    Article  PubMed  CAS  Google Scholar 

  • CDFG (2007) Natural Community Conservation Planning. http://www.dfg.ca.gov/nccp. Cited 13 July 2007

  • Chatzimanolis S, Caterino MS (2007a) Limited phylogeographic structure in a flightless ground beetle, Calathus ruficollis, in southern California. Divers Distrib 13:498–509

    Article  Google Scholar 

  • Chatzimanolis S, Caterino MS (2007b) Toward a better understanding of the ‘Transverse Range Break’: lineage diversification in southern California. Evolution 61:2127–2141

    Article  PubMed  Google Scholar 

  • Dobson AP, Rodriguez JP, Roberts WM, Wilcover DW (1997) Geographic distribution of endangered species in the United States. Science 275:550–553

    Article  PubMed  CAS  Google Scholar 

  • Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes—application to human mitochondrial-DNA restriction data. Genetics 131:479–491

    PubMed  CAS  Google Scholar 

  • Excoffier L, Laval G, Schneider S (2005) ARLEQUIN ver. 3.0: an integrated software package for population genetics data analysis. Evol Bioinf Online 1:47–50

    CAS  Google Scholar 

  • Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum-likelihood approach. J Mol Evol 17:368–376

    Article  PubMed  CAS  Google Scholar 

  • Fisher RN, Suarez AV, Case TJ (2002) Spatial patterns in the abundance of the Coastal Horned Lizard. Conserv Biol 16:205–215

    Article  Google Scholar 

  • Forest F, Grenyer R, Rouget M, Davies TJ, Cowling RM, Faith DP, Balmford A, Manning JC, Procheş Ş, van der Bank M, Reeves G, Hedderson TAJ, Savolainen V (2007) Preserving the evolutionary potential of floras in biodiversity hotspots. Nature 445:757–760

    Article  PubMed  CAS  Google Scholar 

  • Frankham R (1995) Conservation genetics. Annu Rev Genet 29:305–327

    Article  PubMed  CAS  Google Scholar 

  • Fu YX (1997) Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147:915–925

    PubMed  CAS  Google Scholar 

  • Harden DR (2004) California geology. Prentice Hall, Upper Saddle River, NJ

    Google Scholar 

  • Hickman JC (1993) The Jepson manual: higher plants of California. University of California Press, Berkeley, CA

    Google Scholar 

  • Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755

    Article  PubMed  CAS  Google Scholar 

  • Jensen, JL, Bohonak, AJ, Kelley, ST (2005) Isolation by distance, web service. BMC Genetics 6: 13. v.3.15 (http://ibdws.sdsu.edu/). Accessed November 2007

  • Kuhner MK, Yamato J, Felsenstein J (1998) Maximum likelihood estimation of population growth rates based on the coalescent. Genetics 149:429–434

    PubMed  CAS  Google Scholar 

  • Landry B, Powell JA, Sperling FAH (1999) Systematics of the Argyrotaenia franciscana (Lepidoptera: Tortricidae) species group: evidence from mitochondrial DNA. Ann Entomol Soc Am 92:40–46

    CAS  Google Scholar 

  • Law JH, Crespi BJ (2002) The evolution of geographic parthenogenesis in Timema walking-sticks. Mol Ecol 11:1471–1489

    Article  PubMed  Google Scholar 

  • Moritz C (1994) Application of mitochondrial DNA analysis in conservation: a critical review. Mol Ecol 3:401–411

    Article  CAS  Google Scholar 

  • Moritz C, Faith DP (1998) Comparative phylogeography and the identification of genetically divergent areas for conservation. Mol Ecol 7:419–429

    Article  Google Scholar 

  • Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature (London) 403:853–858

    Article  CAS  Google Scholar 

  • Newman D, Tallmon DA (2001) Experimental evidence for beneficial fitness effects of gene flow in recently isolated populations. Conserv Biol 15:1054–1063

    Article  Google Scholar 

  • Posada D (2006) ModelTest Server: a web-based tool for the statistical selection of models of nucleotide substitution online. Nucleid Acids Res 34:W700–W703

    Article  CAS  Google Scholar 

  • Riley SPD, Busteed GT, Kats LB, Vandergon TL, Lee LFS, Dagit RG, Kerby JL, Fisher RN, Sauvajot RM (2005) Effects of urbanization on the distribution and abundance of amphibians and invasive species in southern California streams. Conserv Biol 19:1894–1907

    Article  Google Scholar 

  • Rissler LJ, Hijmans RJ, Graham CH, Moritz C, Wake DB (2006) Phylogeographic lineages and species comparisons in conservation analyses: a case study of California herpetofauna. Am Nat 167:655–666

    Article  PubMed  Google Scholar 

  • Rubinoff D (2001) Evaluating the California Gnatcatcher as an umbrella species for conservation of southern California coastal sage scrub. Conserv Biol 15:1374–1383

    Article  Google Scholar 

  • Rundel PW, King JA (2001) Ecosystem processes and dynamics in the urban/wildland interface of southern California. J Mediterr Ecol 2:209–219

    Google Scholar 

  • Schwartz MW, Thorne JH, Viers JH (2006) Biotic homogenization of the California flora in urban and urbanizing regions. Biol Conserv 127:282–291

    Article  Google Scholar 

  • Seabloom EW, Williams JW, Slayback D, Stoms DM, Viers JH, Dobson AP (2006) Human impacts, plant invasion, and imperiled plant species in California. Ecol Applic 16:1338–1350

    Article  Google Scholar 

  • Seagraves KA, Pellmyr O (2001) Phylogeography of the yucca moth Tegeticula maculata: the role of historical biogeography in reconciling high genetic structure with limited speciation. Mol Ecol 10:1247–1253

    Article  Google Scholar 

  • Suarez AV, Bolger DT, Case TJ (1998) The effects of fragmentation and invasion on the native ant community in coastal southern California. Ecology 79:2041–2056

    Article  Google Scholar 

  • Syphard AD, Clarke KC, Franklin J (2005) Using a cellular automaton model to forecast the effects of urban growth on habitat patterns in southern California. Ecol Complexity 2:185–203

    Article  Google Scholar 

  • Syphard AD, Franklin J, Keeley JE (2006) Simulating the effects of frequent fire on southern California coastal shrublands. Ecol Applic 16:1744–1756

    Article  Google Scholar 

  • Tajima F (1989) The effect of change in population-size on DNA polymorphism. Genetics 123:597–601

    PubMed  CAS  Google Scholar 

  • Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial-DNA in humans and chimpanzees. Mol Biol Evol 10:512–526

    PubMed  CAS  Google Scholar 

  • Vandergast AG, Bohonak AJ, Weissman DB, Fisher RN (2007) Understanding the genetic effects of recent habitat fragmentation in the context of evolutionary history: phylogeography and landscape genetics of a southern California endemic Jerusalem cricket (Orthoptera: Stenopelmatidae: Stenopelmatus). Mol Ecol 16:977–992

    Article  PubMed  CAS  Google Scholar 

  • Wilcox BA, Murphy DD (1985) Conservation strategy: the effects of fragmentation and extinction. Am Nat 125:879–887

    Article  Google Scholar 

Download references

Acknowledgments

We appreciate the assistance of A. Ramsdale, R. Aalbu, K. Will, S. Mulqueen, P. Russell, P. Jump, and I. Foley in collecting or providing specimens, and that of G. Betzholtz in the lab. Several preserves, agencies (and their personnel) generously granted collecting permission and otherwise provided assistance: the California Department of Fish and Game, Los Padres National Forest (M. Freel), the UC Sedgwick Reserve (M. Williams), the Arroyo Hondo Preserve (Land Trust for Santa Barbara County, C. Chapman, J. Iwerks, J. Dunn, and J. Warner), UC Whitaker Forest (R. York), Sequoia National Forest (J. White), Camp Cedar Falls (R. Young), Angeles National Forest and the San Dimas Experimental Forest (M. Oxford), San Bernardino National Forest (M. Lardner, R. Eliason), the UC James Reserve (M. Hamilton), the UC Coal Oil Point Reserve (C. Sandoval), and the UC Santa Cruz Island Reserve (L. Laughrin). This work was supported by the Schlinger Foundation, a bequest from G. Oostertag, and National Science Foundation award DEB0447694 to M. Caterino.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael S. Caterino.

 Appendices

 Appendices

Appendix 1 Sampling localities by region, with haplotypes represented in each
Appendix 2 Haplotypes and GenBank accession numbers
Appendix 3 Pairwise population FST values

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caterino, M.S., Chatzimanolis, S. Conservation genetics of three flightless beetle species in southern California. Conserv Genet 10, 203–216 (2009). https://doi.org/10.1007/s10592-008-9548-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-008-9548-7

Keywords

Navigation