Skip to main content

Advertisement

Log in

Inbreeding depression in ring-tailed lemurs (Lemur catta): genetic diversity predicts parasitism, immunocompetence, and survivorship

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

An Erratum to this article was published on 24 November 2015

Abstract

The consequences of inbreeding have been well studied in a variety of taxa, revealing that inbreeding has major negative impacts in numerous species, both in captivity and in the wild; however, as trans-generational health data are difficult to obtain for long-lived, free-ranging species, similar analyses are generally lacking for nonhuman primates. Here, we examined the long-term effects of inbreeding on numerous health estimates in a captive colony of ring-tailed lemurs (Lemur catta), housed under semi-natural conditions. This vulnerable strepsirrhine primate is endemic to Madagascar, a threatened hotspot of biodiversity; consequently, this captive population represents an important surrogate. Despite significant attention to maintaining the genetic diversity of captive animals, breeding colonies invariably suffer from various degrees of inbreeding. We used neutral heterozygosity as an estimate of inbreeding and showed that our results reflect genome-wide inbreeding, rather than local genetic effects. In particular, we found that genetic diversity affects several fitness correlates, including the prevalence and burden of Cuterebra parasites and a third (N = 6) of the blood parameters analyzed, some of which reflect immunocompetence. As a final validation of inbreeding depression in this captive colony, we showed that, compared to outbred individuals, inbred lemurs were more likely to die earlier from diseases. Through these analyses, we highlight the importance of monitoring genetic variation in captive animals—a key objective for conservation geneticists—and provide insight into the potential negative consequences faced by small or isolated populations in the wild.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Amos W, Worthington Wilmer J, Fullard K et al (2001) The influence of parental relatedness on reproductive success. Proc R Soc Lond B 268:2021–2027

    Article  CAS  Google Scholar 

  • Balloux F (2004) Heterozygote excess in small populations and the heterozygote-excess effective population size. Evolution 58:1891–1900

    PubMed  Google Scholar 

  • Balloux F, Amos W, Coulson T (2004) Does heterozygosity estimate inbreeding in real populations? Mol Ecol 13:3021–3031

    Article  PubMed  CAS  Google Scholar 

  • Cassinello J (2005) Inbreeding depression on reproductive performance and survival in captive gazelles of great conservation value. Biol Conserv 122:453–464

    Article  Google Scholar 

  • Charlesworth D, Charlesworth B (1987) Inbreeding depression and its evolutionary consequences. Annu Rev Ecol Syst 18:237–268

    Article  Google Scholar 

  • Charlesworth D, Charlesworth B (1999) The genetic basis of inbreeding depression. Genet Res 74:329–340

    Article  PubMed  CAS  Google Scholar 

  • Charpentier MJE, Widdig A, Alberts SC (2007) Inbreeding depression in primates: an historical review of methods used and empirical data. Am J Primatol 69:1–17

    Article  Google Scholar 

  • Coltman DW, Slate J (2003) Microsatellite measures of inbreeding: a meta-analysis. Evolution 57:971–983

    PubMed  CAS  Google Scholar 

  • Coulson T, Albon S, Slate J et al (1999) Microsatellite loci reveal sex-dependent responses to inbreeding and outbreeding in red deer calves. Evolution 53:1951–1960

    Article  Google Scholar 

  • Coulson T, Pemberton JM, Albon SD et al (1998) Microsatellites reveal heterosis in red deer. Proc R Soc Lond B 267:489–495

    Article  Google Scholar 

  • Crnokrak P, Roff DA (1999) Inbreeding depression in the wild. Heredity 83:260–270

    Article  PubMed  Google Scholar 

  • Davis JM, Alpert JD, Tracy KJ et al (1991) Increased neutrophil mobilization and decreased chemotaxis during cortisol and epinephrine infusions. J Trauma 31:725–732

    Article  PubMed  CAS  Google Scholar 

  • Drea CM (2007) Sex and seasonal differences in aggression and steroid secretion in Lemur catta: are socially dominant females hormonally ‘masculinized’? Horm Behav 51:555–567

    Article  PubMed  CAS  Google Scholar 

  • Du Puy D, Moat J (1998) Vegetation mapping and classification in Madagascar (using GIS): implications and recommendations for the conservation of biodiversity. In: Huxley CR, Lock JM, Cutler DF (eds) Chorology, taxonomy and ecology of the floras of Africa and Madagascar. Royal Botanic Gardens, Kew

    Google Scholar 

  • Evans CS, Goy RW (1968) Social behaviour and reproductive cycles in captive ring-tailed lemurs (Lemur catta). J Zool 156:181–187

    Article  Google Scholar 

  • Foose TJ, Ballou JD (1988) Population management: theory and practice. Int Zoo Yearb 27:26–41

    Article  Google Scholar 

  • Frankham R (1995) Inbreeding and extinction: a threshold effect. Conserv Biol 9:792–799

    Article  Google Scholar 

  • Frankham R (2003) Genetics and conservation biology. CR Biol 326:S22–S29

    Article  Google Scholar 

  • Garner A, Rachlow JL, Hicks JF (2005) Patterns of genetic diversity and its loss in mammalian populations. Conserv Biol 19:1215–1221

    Article  Google Scholar 

  • Gilpin ME, Soule ME (1986) Minimum viable populations: processes of species extinctions. In: Soule ME (ed) Conservation biology: the science of scarcity and diversity. Sinauer Associates, Sunderland

    Google Scholar 

  • Gompper ME, Stacey PB, Berger J (1997) Conservation implications of the natural loss of lineages in wild mammals and birds. Conserv Biol 11:857–867

    Article  Google Scholar 

  • Goodman SM, Raselimanana A (2003) Hunting of wild animals by Sakalava of the Menabe region: a field report from Kirindy-Mite. Lemur News 8:4–6

    Google Scholar 

  • Goossens B, Chikhi L, Ancrenaz M et al (2006) Genetic signature of anthropogenic population collapse in orang-utans. PLoS Biol 4:285–291

    Article  CAS  Google Scholar 

  • Green GM, Sussman RW (1990) Deforestation history of the eastern rain forests of Madagascar from satellite images. Science 248:212–215

    Article  PubMed  CAS  Google Scholar 

  • Hartl DL, Clark AG (1997) Principles of population genetics. Sinauer Associates, Sunderland

    Google Scholar 

  • Hedrick PW (2001) Conservation genetics: where are we now? Trends Ecol Evol 16:629–636

    Article  Google Scholar 

  • Hedrick PW, Kalinowski ST (2000) Inbreeding depression in conservation biology. Annu Rev Ecol Syst 31:139–162

    Article  Google Scholar 

  • Hoffman JI, Boyd IL, Amos W (2004) Exploring the relationship between parental relatedness and male reproductive success in the antartic fur seal Arctocephalus gazelle. Evolution 58:2087–2099

    PubMed  Google Scholar 

  • Honess PE, Marin C, Brown AP et al (2005) Assessment of stress in non-human primates: application of the neutrophil activation test. Anim Welf 14:291–295

    CAS  Google Scholar 

  • Jolly A (1966) Lemur behavior. University of Chicago Press, Chicago

    Google Scholar 

  • Keller LF, Waller DM (2002) Inbreeding effects in wild populations. Trends Ecol Evol 17:230–241

    Article  Google Scholar 

  • Kim CY, Lee HS, Han SC et al (2005) Hematological and serum biochemical values in Cynomolgus monkeys anesthetized with ketamine hydrochloride. J Med Primatol 34:96–100

    Article  PubMed  CAS  Google Scholar 

  • Lacy RC, Petric A, Warneke M (1993) Inbreeding and outbreeding in captive populations of wild animal species. In: Thornhill NW (ed) The natural history of inbreeding and outbreeding. University of Chicago Press, Chicago

    Google Scholar 

  • Laikre L, Ryman N (1991) Inbreeding depression in a captive wolf (Canis lupus) population. Conserv Biol 5:33–40

    Article  Google Scholar 

  • Laikre L, Ryman N, Lundh NG (1997) Estimated inbreeding in a small, wild muskox Ovibos moschatus population and its possible effects on population reproduction. Biol Conserv 79:197–204

    Article  Google Scholar 

  • Lehman SM (2006) Conservation biology of Malagasy Strepsirhines: a phylogenetic approach. Am J Phys Anthropol 130:238–253

    Article  PubMed  Google Scholar 

  • Lehman SM, Wright PC (2000) Preliminary description of the conservation status of lemur communities in the Betsakafandrika region of eastern Madagascar. Lemur News 5:23–25

    Google Scholar 

  • Luong LT, Heath BD, Polak M (2007) Host inbreeding increases susceptibility to ectoparasitism. J Evol Biol 20:79–86

    Article  PubMed  CAS  Google Scholar 

  • Lynch M, Walsh B (1998) Genetics and analysis of quantitative traits. Sinauer, Sunderland

    Google Scholar 

  • Marshall TC, Slate J, Kruuk LEB et al (1998) Statistical confidence for likelihood-based paternity inference in natural populations. Mol Ecol 7:639–655

    Article  PubMed  CAS  Google Scholar 

  • Mittermeier RA, Cheney DL (1987) Conservation of primates and their habitats. In: Smuts BB, Cheney DL, Seyfarth RM, Wrangham RW, Struhsaker TT (eds) Primate societies. Chicago University Press, Chicago

    Google Scholar 

  • Mittermeier RA, Myers N, Thomsen JB et al (1998) Biodiversity hotspots and major tropical wilderness areas: approaches to setting conservation priorities. Conserv Biol 12:516–520

    Article  Google Scholar 

  • Morrowtesch JL, Mcglone JJ, Norman RL (1993) Consequences of restraint stress on natural-killer-cell activity, behavior, and hormone levels in rhesus macaques (Macaca mulatta). Psychoneuroendocrinology 18:383–395

    Article  CAS  Google Scholar 

  • Moses LE, Gale LC, Altmann J (1992) Methods for analysis of unbalanced longitudinal growth data. Am J Primatol 28:49–59

    Article  Google Scholar 

  • Myers N, Mittermeier RA, Mittermeier CG et al (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858

    Article  PubMed  CAS  Google Scholar 

  • Noble SJ, Chesser RK, Ryder OA (1990) Inbreeding effects in captive populations of ruffed lemurs. Hum Evol 5:283–291

    Article  Google Scholar 

  • Nunn CL, Tae-Won Dokey A (2006) Ranging patterns and parasitism in primates. Biol Lett 2: 351–354

    Article  PubMed  Google Scholar 

  • O’Grady JJ, Brook BW, Reed DH et al (2006) Realistic levels of inbreeding depression strongly affect extinction risk in wild populations. Biol Conserv 133:42–51

    Article  Google Scholar 

  • Pastorini J, Fernando P, Forstner MRJ et al (2005) Characterization of new microsatellite loci for the ring-tailed lemur (Lemur catta). Mol Ecol Notes 5:149–151

    Article  CAS  Google Scholar 

  • Pemberton J (2004) Measuring inbreeding depression in the wild: the old ways are the best. Trends Ecol Evol 19:613–615

    Article  PubMed  Google Scholar 

  • Pereira ME (1995) Development and social-dominance among group-living primates. Am J Primatol 37:143–175

    Article  Google Scholar 

  • Ralls K, Ballou J (1983) Extinction: lessons from zoos. In: Schonewald-Cox CM, Chambers SM, MacBryde B, Thomas WL (eds) Genetics and conservation: a reference for managing wild animal and plant populations. Benjamin/Cummings, Menlo Park

    Google Scholar 

  • Ralls K, Ballou J (1988) Estimates of lethal equivalents and the cost of inbreeding in mammals. Conserv Biol 2:185–193

    Article  Google Scholar 

  • Reed DH, Frankham R (2003) Correlation between fitness and genetic diversity. Conserv Biol 17:230–237

    Article  Google Scholar 

  • Saccheri I, Kuussaari M, Kankare M et al (1998) Inbreeding and extinction in a butterfly metapopulation. Nature 392:491–494

    Article  CAS  Google Scholar 

  • Sapolsky RM (2005) The influence of social hierarchy on primate health. Science 308:648–652

    Article  PubMed  CAS  Google Scholar 

  • Slate J, David P, Dodds KG et al (2004) Understanding the relationship between the inbreeding coefficient and multilocus heterozygosity: theoretical expectations and empirical data. Heredity 93:255–265

    Article  PubMed  CAS  Google Scholar 

  • Slate J, Marshall TC, Pemberton J (2000) A retrospective assessment of the accuracy of the paternity inference program CERVUS. Mol Ecol 9:801–808

    Article  PubMed  CAS  Google Scholar 

  • Sommer JA, Barber RC, Huebinger RM et al (2002) Characterization of 14 microsatellite marker loci in the grey bamboo lemur (Hapalemur griseus). Mol Ecol Notes 2:161–163

    Article  CAS  Google Scholar 

  • Sussman RW (1991) Demography and social-organization of free-ranging Lemur catta in the Beza-Mahafaly-reserve, Madagascar. Am J Phys Anthropol 84:43–58

    Article  Google Scholar 

  • Willard MD, Tvedten H (2004) Small animal clinical diagnosis by laboratory methods, 4th edn. Saunders Company, Philadelphia

    Google Scholar 

  • Wright S (1977) Evolution and the genetics of populations: experimental results and evolutionary deductions. University of Chicago Press, Chicago

    Google Scholar 

Download references

Acknowledgments

We are grateful to the staff of the Duke Lemur Center, particularly D. Brewer, K. Glenn, D. Haring, B. Hess, J. Taylor, and S. Zehr for animal handling and sample collection. We also thank J. Pastorini and J. Peeler (Henson Robinson Zoo) for providing DNA samples. We are also grateful to I. Fiorentino for providing advice on genetic techniques and to S.C. Alberts for providing laboratory resources. Finally, we thank K. Bleby and F. Prugnolle for their helpful comments. This research was supported by N.S.F. grant (BCS-0409367 to C.M.D.) and a Marie Curie outgoing fellowship (to M.J.E.C.). This is DLC publication #1123.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie J. E. Charpentier.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s10592-015-0799-9.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOC 97 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Charpentier, M.J.E., Williams, C.V. & Drea, C.M. Inbreeding depression in ring-tailed lemurs (Lemur catta): genetic diversity predicts parasitism, immunocompetence, and survivorship. Conserv Genet 9, 1605–1615 (2008). https://doi.org/10.1007/s10592-007-9499-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-007-9499-4

Keywords

Navigation