Skip to main content
Log in

Patterns of genetic diversity in Great Lakes bloaters (Coregonus hoyi) with a view to future reintroduction in Lake Ontario

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

The originally diverse ciscoe fish fauna of the Laurentian Great Lakes has suffered many extinctions and local extirpations. Bloaters (Coregonus hoyi) are presumed extirpated from Lake Ontario and the reintroduction of this deepwater fish is under consideration. Given the demographic fluctuations of this species in the other Great Lakes and its recent intralacustrine origin, we sought to identify a genetically diverse and similar source of C. hoyi via an analysis of genetic diversity and population structure using 10 microsatellite loci. Despite well-documented demographic declines, we found no genetic evidence of bottlenecks in 12 C. hoyi samples from the four potential donor lakes (Huron, Michigan, Superior and Nipigon). By contrast, evidence of bottlenecks in historical samples of C. artedi from Lake Ontario suggested that standard genetic methods frequently used to identify population bottlenecks can only detect very severe and long-lasting demographic declines in naturally large populations. Patterns of genetic differentiation and assignment tests indicated that C. hoyi from Lake Huron and Lake Michigan, which are not differentiated, are genetically most similar to Lake Ontario ciscoes. The small available sample of deepwater ciscoes recently caught in Lake Ontario did not allow determining if these represent a small undetected C. hoyi population or a recent invasion of the deep section by C. artedi. On the basis of genetic criteria, we conclude that C. hoyi from any location within Lake Huron or Lake Michigan would be judicious sources of breeders for reintroducing C. hoyi in Lake Ontario.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Baldwin B (1999) Native prey fish re-introduction into Lake Ontario: Bloater (Coregonus hoyi). Discussion Paper prepared for the Great Lakes Fishery Commission, Lake Ontario Committee. Available via www.glfc.org/lakecom/loc/lochome.php. Cited 25 September 2006

  • Baldwin NA, Saalfeld RW, Dochoda MR, Buettner HJ, Eshenroder R (2005) Commercial Fish Production in the Great Lakes 1867–2000. Great Lakes Fishery Commission. Available via http://www.glfc.org/databases/commercial/commerc.php. Cited 25 September 2006

  • Belkhir K, Borsa P, Chikhi L, Raufaste N, Bonhomme F (2004) GENETIX V4.05, logiciel sous Windows TM pour la génétique des populations. Laboratoire Génome, Populations, Interactions, Université de Montpellier II, Montpellier (France)

    Google Scholar 

  • Bowen BW (1999) Preserving genes, species, or ecosystems? Healing the fractured foundations of conservation policy. Mol Ecol 8:S5–S10

    Article  PubMed  CAS  Google Scholar 

  • Bunnell DB, Madenjian CP, Croley II TE (2006) Long-term trends of bloater (Coregonus hoyi) recruitment in Lake Michigan: evidence for the effect of sex-ratio. Can J Fish Aquat Sci 63:832–844

    Article  Google Scholar 

  • Cavalli-Sforza LL, Edwards AWF (1967) Phylogenetic analysis: models and estimation procedures. Evolution 21:550–570

    Article  Google Scholar 

  • Christie WJ (1973) A review of the changes in the fish species composition of lake Ontario. Great Lakes Fish Comm Tech Rep 23:65 p

    Google Scholar 

  • Christie WJ (1974) Changes in fish species composition of the Great Lakes. J Fish Res Bd Can 31:827–854

    Google Scholar 

  • Cornuet JM, Luikart G (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144:2001–2004

    PubMed  CAS  Google Scholar 

  • Crossman EJ (1991) Introduced freshwater fishes: a review of North American perspective with emphasis on Canada. Can J Fish Aquat Sci 48(Suppl. 1):46–57

    Google Scholar 

  • Ebener MP (2005) The state of Lake Huron in 1999. Great Lakes Fishery Commission Special Publication 05–02, 146 pages. Available via http://www.glfc.org/pubs/pub.htm#pubs. Cited 25 September 2006

  • Ebert D, Haag C, Kirkpatrick M, et al (2002) A selective advantage to immigrant genes in a Daphnia metapopulation. Science 295:485–488

    Article  PubMed  CAS  Google Scholar 

  • Eshenroder R, Krueger CC (2002) Reintroduction of native fishes to the Great Lakes proper: a research theme area, Great Lake Fishery Commission, Board of Technical Experts. Available via www.glfc.org/research/Nativefish.htm. Cited 25 September 2006

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  PubMed  CAS  Google Scholar 

  • Favé MJ (2006) Réintroduction du cisco de fumage (Coregonus hoyi) dans le lac Ontario: diversité génétique et consanguinité. M.Sc. thesis, Université Laval

  • Felsenstein J (2005) PHYLIP (Phylogeny Inference Package) version 3.6. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle

    Google Scholar 

  • Fleischer GW, Madenjian CP, Eliott RF, Toneys ML (2005) Planktivores. In: Holey ME, Trudeau TN (eds) The state of Lake Michigan in 2000. Great Lakes Fishery Commission Special Publication 05–01, 25–32. Available via http://www.glfc.org/ pubs/pub.htm#pubs. Cited 25 September 2006

  • Frankham R (1996) Relationship of genetic variation to population size in wildlife. Conserv Biol 10:1500–1508

    Article  Google Scholar 

  • Frankham R, Ballou JD, Briscoe DA (2002) Introduction to conservation genetics. Cambridge University Press, Cambridge

    Google Scholar 

  • Garza JC, Williamson EG (2001) Detection of reduction in population sizes using data from microsatellites loci. Mol Ecol 10:305–318

    Article  PubMed  CAS  Google Scholar 

  • Gilk SE, Wang IA, Hoover CL, Smoker WW, Taylor SG, Gray AK, Gharrett AJ (2004) Outbreeding depression in hybrids between spatially separated pink salmon, Oncorhynchus gorbuscha, populations: marine survival, homing ability, and variability in family size. Environ Biol Fishes 69:287–297

    Article  Google Scholar 

  • Goudet J (2001) FSTAT, a program to estimate and test gene diversities and fixation indices (version 2.9.3.2). Institute of Ecology, Lausanne, Switzerland. Available from http://www.unilch/ izea/softwares/fstat.html. Cited 25 September 2006

  • Harley EH, Baumgarten I, Cunningham J, O’Ryan C (2005) Genetic variation and population structure in remnant populations of black rhinoceros, Diceros biscornis, in Africa. Mol Ecol 14:2981–2990

    Article  PubMed  CAS  Google Scholar 

  • Hartl DL, Clark AG (1997) Principles of population genetics, 2nd ed. Sinauer, Sunderland, MA

    Google Scholar 

  • Hedrick PW, Kalinowski ST (2000) Inbreeding depression in conservation biology. Ann Rev Ecol Syst 31:139–162

    Article  Google Scholar 

  • Holey ME, Trudeau TNE (2005) The state of Lake Michigan in 2000. Great Lakes Fishery Commission Special Publication 05–01, 122 pages. Available via http://www.glfc.org/ pubs/pub.htm#pubs. Cited 25 September 2006

  • Horns WH, Bronte CR, Buishan TR et al (2003) Fish-community objectives for Lake Superior. In: Great Lakes Fishery Commission Special Publication, Great Lakes Fishery Commission Special Publication 03–01

  • Hughes AR, Stachowicz JJ (2004) Genetic diversity enhances the resistance of a seagrass ecosystem to disturbance. Proc Natl Acad Sci USA 101:8998–9002

    Article  PubMed  CAS  Google Scholar 

  • Jones ME, Paetkau D, Geffen E, Moritz C (2004) Genetic diversity and population structure of Tasmanian devils, the largest marsupial carnivore. Mol Ecol 13:2197–2209

    Article  PubMed  CAS  Google Scholar 

  • Keller LF, Weller DM (2002) Inbreeding effects in wild populations. Trends Ecol Evol 17:230–241

    Article  Google Scholar 

  • Kuo C-H, Janzen FJ (2004) Genetic effects of a persistent bottleneck on a natural population of ornate box turtle (Terrapene ornata). Conserv Genet 5:425–437

    Article  CAS  Google Scholar 

  • Lippé C, Dumont P, Bernatchez L (2006) High genetic diversity and no inbreeding in the endangered copper redhorse, Moxostoma hubbsi (Catostomidae, Pisces): the positive sides of a long generation time. Mol Ecol 15:1769–1780

    Article  PubMed  CAS  Google Scholar 

  • Lynch M (1991) The genetic interpretation of inbreeding depression and outbreeding depression. Evolution 45:622–629

    Article  Google Scholar 

  • McPhail JD, Lindsey CC (1970) Freshwater fishes of Northwestern Canada and Alaska. Bull Fish Res Bd Can 173:1–381

    Google Scholar 

  • Mills EL, Casselman JM, Dermott R et al (2005) A synthesis of ecological and fish community changes in Lake Ontario, 1970–2000. Great Lakes Fishery Commission Technical Report 67, 94 pages. Available via http://www.glfc.org/pubs/ pub.htm#tech_reports. Cited25 September 2006

  • Mills EL, Leach JH, Carlton JT, Secor CL (1991) Exotic species in the Great Lakes: a history of biotic crises and anthropogenic introductions, pp 1–118. Great Lakes Fishery Commission Project Completion Report, 140 pages. Available via http://www.glfc.org/ research/rcr.php. Cited 25 September 2006

  • Moritz C (1999) Conservation units and translocations: strategies for conserving evolutionary processes. Hereditas 130:217–228

    Article  Google Scholar 

  • Moritz C (2002) Strategies to protect biological diversity and the evolutionary processes that sustain it. Syst Biol 51:238–254

    Article  PubMed  Google Scholar 

  • Nielsen EE, Hansen MM, Loeschcke V (1997) Analysis of microsatellite DNA from old scale samples of Atlantic salmon Salmo salar a comparison of genetic composition over 60 years. Mol Ecol 6:487–492

    Article  CAS  Google Scholar 

  • O’Brian SJ, Evermann JF (1988) Interactive influence of infectious diseases and genetic diversity in natural populations. Trends Ecol Evol 3:254–259

    Article  Google Scholar 

  • Patton JC, Gallaway BJ, Fechhelm RG, Cronin MA (1997) Genetic variation of microsatellites and mitochondrial DNA markers in broad whitefish (Coregonus nasus) in the Colville and Sagavanirktok Rivers in northern Alaska. Can J Fish Aquat Sci 54:1548–1556

    Article  CAS  Google Scholar 

  • Petit JP, Mousadik A, Pons O (1998) Identifying populations for conservation on the basis of genetic markers. Conserv Biol 12:844–855

    Article  Google Scholar 

  • Phillips RB, Ehlinger TJ (1995) Evolutionary and ecological considerations in the reestablishment of Great Lakes coregonid fishes. In: Nielsen JL (ed) Evolution and the aquatic ecosystem: defining unique units in population conservation. American Fisheries Society, pp 133–144

  • Piry S, Alapetite A, Cornuet J-M, Paetkau D, Beaudoin L, Estoup A (2004) GeneClass2: A software for genetic assignment and first-generation migrant detection. J Hered 95:536–539

    Article  PubMed  CAS  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed  CAS  Google Scholar 

  • Ramstad KM, Woody CA, Sage GK, Allendorf FW (2004) Founding events influence genetic population structure of sockeye salmon (Oncorhynchus nerka) in Lake Clark, Alaska. Mol Ecol 13:277–290

    Article  PubMed  CAS  Google Scholar 

  • Rannala B, Mountain JL (1997) Detecting immigration by using multilocus genotypes. Proc Natl Acad Sci USA 94:9197–9201

    Article  PubMed  CAS  Google Scholar 

  • Raymond M, Rousset F (2003) GENEPOP (version 3.4), an update of: GENEPOP (version 1.2): population genetics software for exact test and ecumenism. J Hered 86:248–249

    Google Scholar 

  • Ricciardi A (2001) Facilitative interactions among aquatic invaders: is an “invasional meltdown” occuring in the Great Lakes? Can J Fish Aquat Sci 58:2513–2525

    Article  Google Scholar 

  • Rice WR (1989) Analysing tables of statistical tests. Evolution 43:223–225

    Article  Google Scholar 

  • Ryman N, Laikre L (1991) Effect of supportive breeding on the genetically effective population size. Conserv Biol 5:325–329

    Article  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor, NY

    Google Scholar 

  • Schaeffer JS (2004) Population dynamics of bloaters Coregonus hoyi in Lake Huron, 1980–1998. Ann Zool Fenn 41:271–279

    Google Scholar 

  • Schneider SD, Roessli D, Excoffier L (2000) ARLEQUIN (V. 2.0): a software for population genetic analysis. Genetics and Biometry Laboratory, University of Geneva, Switzerland

    Google Scholar 

  • Scott WB, Crossman EJ (1973) Freshwater fishes of Canada. Bull Fish Res Bd Can 184:1–1092

    Google Scholar 

  • Seehausen O (2004) Hybridization and adaptive radiation. Trends Ecol Evol 19:198–207

    Article  PubMed  Google Scholar 

  • Sherwin WB, Timms P, Wilcken J, Houlden B (2000) Analysis and conservation implications of Koalas genetics. Conserv Biol 14:639–649

    Article  Google Scholar 

  • Smith GR, Todd TN (1984) Evolution of species flocks of fishes in north temperate lakes. In: Echelle AA, Kornfield I (eds) Evolution of fish species flocks. University of Maine Press, Orono, pp 45–68

    Google Scholar 

  • Stedman RM, Argyle RL (1985) Rainbow smelt (Omserus mordax) as predators on young bloaters (Coregonus hoyi) in Lake Michigan. J Great Lakes Res 11:40–42

    Article  Google Scholar 

  • Stewart TJ, Lange RE, Orsatti SD, Schneider CP, Mathers A, Daniels ME (1999) Fish-community objectives for Lake Ontario. Great Lakes Fishery Commission Special Publication 99–01, 63 pages. Available via http://www.glfc.org/pubs/pub.htm#pubs. Cited 25 September 2006

  • Tallmon DA, Luikart G, Waples RS (2004) The alluring simplicity and complex reality of genetic rescue. Trends Ecol Evol 19:489–496

    Article  PubMed  Google Scholar 

  • TeWinkel LM, Fleischer GW (1999) Vertical migration and nighttime distribution of adult bloaters in Lake Michigan. Trans Am Fish Soc 128:459–474

    Article  Google Scholar 

  • Todd TN (1981) Allelic variability in species and stocks of Lake Superior ciscoes (Coregoninae). Can J Fish Aquat Sci 38:1808–1813

    Google Scholar 

  • Turgeon J, Bernatchez L (2001) Clinal variation at microsatellites loci reveals historical secondary intergradation between glacial races of Coregonus artedi (Teleostei: Coregoninae). Evolution 55:2274–2286

    PubMed  CAS  Google Scholar 

  • Turgeon J, Bernatchez L (2003) Reticulate evolution and phenotypic diversity in North American ciscoes, Coregonus spp. (Teleostei: Salmonidae): implication for the conservation of an evolutionary legacy. Conserv Genet 4:67–81

    Article  CAS  Google Scholar 

  • Turgeon J, Estoup A, Bernatchez L (1999) Species flock in the North American Great Lakes: Molecular Ecology of Lake Nipigon ciscoes (Teleostei: Coregonidae: Coregonus). Evolution 53:1857–1871

    Article  CAS  Google Scholar 

  • Van Oostershout C, Hutchinson WF, Wills DPM, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538

    Article  CAS  Google Scholar 

  • Waples RS, Gaggiotti OE (2006) What is a population? An empirical evaluation of some genetic methods for identifying the number of gene pools and their degree of connectivity. Mol Ecol 15:1419–1439

    Article  PubMed  CAS  Google Scholar 

  • Watts PC, Rouquette JR, Saccheri IJ, Kemp SJ, Thompson DJ (2004) Molecular and ecological evidence for small-scale isolation by distance in an endangered damselfly, Coenagrion mercuriale. Mol Ecol 13:2931–2945

    Article  PubMed  CAS  Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370

    Article  Google Scholar 

  • Whitehouse AM, Harley EH (2001) Post-bottleneck genetic diversity of elephants populations in South Africa, revealed using microsatellite analysis. Mol Ecol 10:2139–2149

    Article  PubMed  CAS  Google Scholar 

  • Whitlock MC, Ingvarsson PK, Hatfield T (2000) Local drift and the heterosis of interconnected populations. Heredity 84:452–457

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a Great Lakes Fishery Commission grant to JT. We would like to thank those who provided samples: Rick Salmon (OMNR), Lloyd Mohr (OMNR), Bruce Morrison (OMNR), Owen Gorman (USGS), and Kim Scribner (Michigan State University), as well as two anonymous reviewers who provided very constructive comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julie Turgeon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Favé, MJ., Turgeon, J. Patterns of genetic diversity in Great Lakes bloaters (Coregonus hoyi) with a view to future reintroduction in Lake Ontario. Conserv Genet 9, 281–293 (2008). https://doi.org/10.1007/s10592-007-9339-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-007-9339-6

Keywords

Navigation