Skip to main content
Log in

Feed-backs between genetic structure and perturbation-driven decline in seagrass (Posidonia oceanica) meadows

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

We explored the relationships between perturbation-driven population decline and genetic/genotypic structure in the clonal seagrass Posidonia oceanica, subject to intensive meadow regression around four Mediterranean fish-farms, using seven specific microsatellites. Two meadows were randomly sampled (40 shoots) within 1,600 m2 at each site: the “impacted” station, 5–200 m from fish cages, and the “control” station, around 1,000 m downstream further away (considered a proxy of the pre-impact genetic structure at the site). Clonal richness (R), Simpson genotypic diversity (D*) and clonal sub-range (CR) were highly variable among sites. Nevertheless, the maximum distance at which clonal dispersal was detected, indicated by CR, was higher at impacted stations than at the respective control station (paired t-test: P < 0.05, N = 4). The mean number of alleles (Â) and the presence of rare alleles ( r) decreased at impacted stations (paired t-test: P < 0.05, and P < 0.02, respectively, N = 4). At a given perturbation level (quantified by the organic and nutrient loads), shoot mortality at the impacted stations significantly decreased with CR at control stations (R = 0.86, P < 0.05). Seagrass mortality also increased with  (R = 0.81, P < 0.10), R (R = 0.96, P < 0.05) and D* (R = 0.99, P < 0.01) at the control stations, probably because of the negative correlation between those parameters and CR. Therefore, the effects of clonal size structure on meadow resistance could play an important role on meadow survival. Large genotypes of P. oceanica meadows thus seem to resist better to fish farm-derived impacts than little ones. Clonal integration, foraging advantage or other size-related fitness traits could account for this effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alberte RS, Suba GK, Procaccini G et al (1994) Assessment of genetic diversity of seagrass populations using DNA fingerprinting: implications for population stability and management. Proc Natl Acad Sci USA 91:1049–1053

    Article  PubMed  CAS  Google Scholar 

  • Alberto F, Correia L, Arnaud-Haond S et al (2003) New microsatellite markers for the endemic Mediterranean seagrass Posidonia oceanica. Mol Ecol Notes 3:253–255

    Article  CAS  Google Scholar 

  • Alberto F, Gouveia L, Arnaud-Haond S et al (2005) Spatial genetic structure, neighbourhood size and clonal sub-range in seagrass (Cymodocea nodosa) populations. Mol Ecol 14:2669–2681

    Article  PubMed  CAS  Google Scholar 

  • Arnaud-Haond S, Belkhir K (2007) GenClone 1.0: a new software for population genetics analysis on clonal organisms. Mol Ecol Notes 7:15–17

    Article  CAS  Google Scholar 

  • Arnaud-Haond S, Alberto F, Procaccini G et al (2005) Assessing genetic diversity in clonal organisms: low diversity or low resolution? Combining power and cost-efficiency in selecting markers. J Hered 94(6):434–440

    Article  Google Scholar 

  • Arnaud-Haond S, Migliaccio M, Diaz-Almela E et al (2007) Vicariance patterns in the Mediterranean Sea: East-West cleavage and low dispersal in the endemic seagrass Posidonia oceanica. J Biogeogr DOI: 10.1111/j.1365-2699.2006.01671.x

  • Balestri E, Cinelli F (2003) Sexual reproductive success in Posidonia oceanica. Aquat Bot 75:21–32

    Article  Google Scholar 

  • Belkhir K, Borsa P, Chikhi L et al (2004) GENETIX 4.05, logiciel sous Windows TM pour la génétique des populations. Laboratoire Génome et Populations, Interactions, Adaptations, CNRS UMR5000, Université Montpellier II, Montpellier (France). http://www.genetix.univ-montp2.fr/genetix/genetix.htm

  • Bethoux JP, Copin-Montegut G (1986) Biological fixation of atmospheric nitrogen in the Mediterranean Sea. Limnol Oceanogr 31:1353–1358

    Article  CAS  Google Scholar 

  • Collevatti RG, Grattapaglia D, Hay JD (2001). Population genetic structure of the endangered tropical tree species Caryocar brasiliense, based on variability at microsatellite loci. Mol Ecol 10:349–356

    Article  PubMed  CAS  Google Scholar 

  • Delgado O, Grau A, Pou S et al (1997) Seagrass regression caused by fish cultures in Fornells Bay (Menorca, Western Mediterranean). Oceanol Act 20(3):557–563

    Google Scholar 

  • Delgado O, Ruiz JM, Pérez M et al (1999) Effects of fish farming on seagrass (Posidonia oceanica) in a Mediterranean bay: seagrass decline after organic loading cessation. Oceanol Act 22(1):109–117

    Article  CAS  Google Scholar 

  • den Hartog C (1970) The Seagrasses of the world. North Holland Publishing Company, Amsterdam

    Google Scholar 

  • Díaz-Almela E, Marbà N, Álvarez E et al (2006) Patterns of seagrass (Posidonia oceanica) flowering in the Western Mediterranean. Mar Biol 148(4):723–742

    Article  Google Scholar 

  • Diaz-Almela E, Marbà N, Álvarez E et al (submitted) Benthic inputs as predictors of seagrass (Posidonia oceanica) fish farm-induced decline. MS available at http://www.arxiv.org; Reference: q-bio.QM/0611006

  • Dorken ME, Eckert CG (2001) Severely reduced sexual reproduction in northern populations of a clonal plant, Decodon verticillatus (Lythraceae). J Ecol 89:339–350

    Article  Google Scholar 

  • Doyle JJ, Doyle JL (1988) Natural interspecific hybridization in eastern North American Claytonia. Am J Bot 75:1238–1246

    Article  Google Scholar 

  • Duarte CM, Borum J, Short FT, Walker DI (in press) Seagrass ecosystems: their global status and prospects. In: Polunin NVC (ed) Aquatic ecosystems: trends and global prospects. Cambridge University Press

  • Edwards KR, Travis SE, Proffitt CE (2005) Genetic effects of a large-scale Spartina alterniflora (Smooth Cordgrass) dieback and recovery in the Northern Gulf of Mexico. Estuaries 28(2):204–214

    Google Scholar 

  • Gambi MC, Buia MC, Mazzella L (1996) Record of a diffuse germination of Posidonia oceanica (L.) Delile in the central Adriatic Sea (Croatia). Biol Mar Medit 3:467–470

    Google Scholar 

  • Hämmerli A, Reusch TBH (2003) Inbreeding depression influences genet size distribution in a marine angiosperm. Mol Ecol 12:619–629

    Article  PubMed  Google Scholar 

  • Hamrick JL, Linhart YB, Mitton JB (1979) Relationships between life-history characteristics and electrophoretically detectable genetic-variation in plants. Annu Rev Ecol Syst 10:173–200

    Article  Google Scholar 

  • Harada Y, Kawano S, Iwasa Y (1997) Probability of clonal identity: inferring the relative success of sexual versus clonal reproduction from spatial genetic patterns. J Ecol 85:591–600

    Article  Google Scholar 

  • Hemminga M, Duarte CM (2000) Seagrass ecology. Cambridge University Press, Cambridge

    Google Scholar 

  • Holmer M, Pérez M, Duarte CM (2003) Benthic primary producers – a neglected environmental problem in Mediterranean maricultures? Mar Poll Bull 46:1372–1376

    Article  CAS  Google Scholar 

  • Holmer M, Marbà N, Diaz-Almela E et al (2007) Sedimentation of organic matter from fish farms in oligotrophic Mediterranean assessed through bulk and stable isotope (δ13C and δ15N) analyses. Aquaculture 262(2–4):268–280

    Article  CAS  Google Scholar 

  • Hughes RA, Stachowicz JJ (2004) Genetic diversity enhances the resistance of a seagrass ecosystem to disturbance. Proc Natl Acad Sci 101:8998–9002

    Article  PubMed  CAS  Google Scholar 

  • Leberg PL (1992) Effects of population bottlenecks on genetic diversity as measured by allozyme electrophoresis. Evolution 46(2):477–494

    Article  Google Scholar 

  • Lee CT, Wickneswari R, Mahani MC et al (2002) Effect of selective logging on the genetic diversity of Scaphium macropodum. Biol Cons 104:107–118

    Article  Google Scholar 

  • Leimu R, Multikainen P, Koricheva J, Fischer M (2006) How general are positive relationships between plant population size, fitness and genetic variation? J Ecol 94:942–952

    Article  Google Scholar 

  • Loreau M, Hector A (2001) Partitioning selection and complementarity in biodiversity experiments. Nature 412:72–76

    Article  PubMed  CAS  Google Scholar 

  • Lowe AJ, Boshier D, Ward M et al (2005) Genetic resource impacts of habitat loss and degradation; reconciling empirical evidence and predicted theory for neotropical trees. Heredity 95:255–273

    Article  PubMed  CAS  Google Scholar 

  • Marbà N, Duarte CM (1998) Rhizome elongation and seagrass clonal growth. Mar Ecol Progr Ser 174:269–280

    Article  Google Scholar 

  • Marbà N, Duarte CM, Holmer M et al (2002) Effectiveness of protection of seagrass (Posidonia oceanica) populations in Cabrera National Park (Spain). Environ Conserv 29:509–518

    Article  Google Scholar 

  • Marbà N, Duarte CM, Diaz-Almela E et al (2005) Direct evidence of imbalanced seagrass (Posidonia oceanica) shoot population dynamics in the Spanish Mediterranean. Estuaries 28:53–62

    Article  Google Scholar 

  • Mateo MA, Romero J, Pérez M et al (1997) Dynamics of millenary organic deposits resulting from the growth of the Mediterranean Seagrass Posidonia oceanica. Est Coast Shelf Sci 44:103–110

    Article  Google Scholar 

  • McNeilly T, Roose ML (1984) The distribution of perennial ryegrass genotypes in swards. New Phytol 98:503–513

    Article  Google Scholar 

  • Meinesz A, Lefevre JR (1984) Régéneration d’un herbier de Posidonia oceanica quarante années après sa destruction par une bombe dans la rade de Villefranche (Alpes Maritimes-France). In: Boudouresque CF, Jeudy de Grissac A, Olivier J (eds) International Workshop on Posidonia oceanica beds, vol 1. GIS Posidonie Publ. Marseille, France, 12–15 Oct. 1983, pp 39–44

  • Micheli C, Paganin P, Peirano A et al (2005) Genetic variability of Posidonia oceanica (L.) Delile in relation to local factors and biogeographic patterns. Aquat Bot 82:210–221

    Article  Google Scholar 

  • Nei M (1975) Molecular population genetics and evolution. North Holland, Amsterdam

    Google Scholar 

  • Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York

    Google Scholar 

  • Oborny B, Kun A (2002) Fragmentation of clones: how does it influence dispersal and competitive ability? Evol Ecol 15:319–346

    Article  Google Scholar 

  • Oborny B, Kun A, Czaran T et al (2000) The effect of clonal integration on plant competition for mosaic habitat space. Ecology 81:3291–3304

    Article  Google Scholar 

  • Olesen J, Sand-Jensen K (1994) Demography of shallow eelgrass (Zostera marina) populations – shoot dynamics and biomass development. J. Ecol 82:379–390

    Article  Google Scholar 

  • Parks JC, Werth CR (1993) A study of spatial features of clones in a population of bracken fern, Pteridium aquilinum (Dennstaedtiaceae). Am J Bot 80:537–544

    Article  Google Scholar 

  • Pasqualini V, Pergent-Martini C Clabaut P et al (1998) Mapping of Posidonia oceanica using aerial photographs and side scan sonar: application off the island of Corsica (France). Est Coast Shelf Sci 47:359–367

    Article  Google Scholar 

  • Pielou EC (1969) An introduction to mathematical ecology. Wiley-Interscience, New-York

    Google Scholar 

  • Reusch TBH (2006) Does disturbance enhance genotypic diversity in clonal organisms? A field test in the marine angiosperm Zostera marina. Mol Ecol 15:277–286

    Article  PubMed  CAS  Google Scholar 

  • Reusch TBH, Hughes AR (2006) The emerging role of genetic diversity for ecosystem functioning: estuarine macrophytes as models. Estuaries Coasts 29(1):159–164

    Google Scholar 

  • Reusch TBH, Boström C, Stam WT, Olsen JL (1999) An ancient eelgrass clone in the Baltic. Mar Ecol Progr Ser 183:301–304

    Article  Google Scholar 

  • Reusch TB, Ehlers A, Hämmerli A et al (2005) Ecosystem recovery after climatic extremes enhanced by genotypic diversity. Proc Natl Acad Sci 102:2826–2831

    Article  PubMed  CAS  Google Scholar 

  • Ritland K (1996) Estimators for pairwise relatedness and individual inbreeding coefficients. Gen Res 67:175–185

    Article  Google Scholar 

  • Rousset F (1997) Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 145(4):1219–1228

    PubMed  CAS  Google Scholar 

  • Ruiz JM, Pérez M, Romero J (2001) Effects of fish farm loadings on seagrass (Posidonia oceanica) distribution, growth and photosynthesis. Mar Poll Bull 42(9):749–760

    Article  CAS  Google Scholar 

  • Sintes T, Marbà N, Duarte CM (2006) Modeling non-linear seagrass clonal growth: assessing the efficiency of space occupation across the seagrass flora. Estuaries Coasts 29(1):72–80

    Google Scholar 

  • Tibayrenc M, Kjellberg F, Ayala FJ (1990) A clonal theory of parasitic protozoa: the population structures of Entamoeba, Giardia, Leishmania, Naegleria, Plasmodium, Trichomonas, and Trypanosoma and their medical and taxonomical consequences. Proc Nat Acad Sci USA 87:2414–2418

    Article  PubMed  CAS  Google Scholar 

  • van Kleunen M, Fischer M, Schmid B (2000) Clonal integration in Ranunculus reptans: by-product or adaptation? J Evol Biol 13:237–248

    Article  Google Scholar 

  • Vekemans X, Hardy OJ (2004) New insights from fine-scale spatial genetic structure analyses in plant populations. Mol Ecol 13(4):921–935

    Article  PubMed  CAS  Google Scholar 

  • Vidondo B, Middleboe AL, Stefansen K et al (1997) Dynamics of a patchy seagrass (Cymodocea nodosa) landscape. Size and age distributions, growth and demography of seagrass patches. Mar Ecol Prog Ser 158:131–138

    Article  Google Scholar 

  • Watkinson AR, Powell JC (1993) Seedling recruitment and the maintenance of clonal diversity in plant populations–a computer simulation of Ranunculus Repens. J Ecol 81(4):707–717

    Article  Google Scholar 

  • White GM, Boshier DH, Powell W (1999) Genetic variation within a fragmented population of Swietenia humilis Zucc. Mol Ecol 8:1899–1909

    Article  PubMed  CAS  Google Scholar 

  • Widmer A, Lexer C (2001) Glacial refugia: sanctuaries for allelic richness, but not for gene diversity. Trends Ecol Evol 16(6):267–269

    Article  PubMed  Google Scholar 

  • Williams SL (2001) Reduced genetic diversity in eelgrass transplantations affects both population growth and individual fitness. Ecol Appl 11(5):1472–1488

    Article  Google Scholar 

  • Wright S (1931) Evolution in Mendelian populations. Genetics 16:97–159

    PubMed  CAS  Google Scholar 

  • Young A, Boyle T, Brown T (1996) The population genetic consequences of habitat fragmentation for plants. Tree 11:413–418

    Google Scholar 

  • Young AG, Hill JH, Murray BG et al (2002) Breeding system, genetic diversity and clonal structure in the sub-alpine forb Rutidosis leiolepis F. Muell. (Asteraceae). Biol Cons 106:71–78

    Article  Google Scholar 

Download references

Acknowledgments

The present work has been financed by the MedVeg (Q5RS-2001-02456 of FP5) and thresholds (contract 003933-2 of FP 6) of the European Union. We are grateful to Rocío Santiago, Fernando Lázaro and Alberto Rabito for their assistance in the field.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Diaz-Almela.

 

 

Appendix Allelic frequencies of the seven loci at the four sites (C = Control station; I = Impacted station)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Diaz-Almela, E., Arnaud-Haond, S., Vliet, M.S. et al. Feed-backs between genetic structure and perturbation-driven decline in seagrass (Posidonia oceanica) meadows. Conserv Genet 8, 1377–1391 (2007). https://doi.org/10.1007/s10592-007-9288-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-007-9288-0

Keywords

Navigation