Skip to main content
Log in

Spatial genetic patterns generated by two admixing genetic lineages: a simulation study

  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

Two formerly geographically separated lineages of the zebra mussel Dreissena polymorpha had been given the opportunity to mix extensively across the newly built German Main–Danube canal. We had monitored this admixture of mussel lineages and had described spatial patterns in different genetic measures [Müller et al. 2001 (Heredity, 86: 103); 2002 (Proc. R. Soc. Lond., 269: 1139)]. Here, we present an individual-based model to assess the potential of spatial genetic patterns of detecting and quantifying admixture of mussel lineages. Genetic measures studied are (1) allele frequencies, (2) deviations from Hardy–Weinberg expectations of loci (deficit of heterozygotes, HWD) and (3) linkage disequilibria between unlinked loci (LD). For allele frequencies, we observed a cline over the zone of admixture in all simulations of mixing mussel lineages suggesting that these are appropriate for verification of their mixture. The point of the first contact between lineages was always detectable from their intermediate allele frequencies. LD and HWD were only spatially informative for diagnostic loci or loci with very strong differences in allele frequencies of lineages. For such loci, the probability of disequilibria was highest where lineages had met and decreased towards both sources of lineages Main and Danube. The overall probability of detecting any disequilibrium was higher for LD than for HWD and increased with an increasing rate of genetic interchange. Our simulation results are corroborated by our zebra mussel data and studies from literature. They are applicable to any case of two known linearly mixing genetic lineages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barton HH, Hewitt GM (1985). Analysis of hybrid zones. Ann. Rev. Syst. 16:113–148

    Article  Google Scholar 

  • Barton NH, Gale KS (1993). Genetic analysis of hybrid zones. In: Harrison RG (eds). Hybrid Zones and the Evolutionary Process. Oxford University Press, New York, pp. 13–45

    Google Scholar 

  • Bierne N, Borsa P, Daguin C, Jollivet D, Viard F, Bonhomme F, David P (2003). Introgression patterns in a mosaic hybrid zone between Mytilus edulis and M. galloprovincialis. Mol. Ecol. 12:447–461

    Article  PubMed  CAS  Google Scholar 

  • Bohonak AJ, Davies N, Villablanca FX, Roderick GK (2001). Invasion genetics of New World medflies: testing alternative colonization scenarios. Biol. Invasions 3:103–111

    Article  Google Scholar 

  • Bucciarelli G, Golani D, Bernadi G (2002). Genetic cryptic species as biological invaders: the case of a Lessepsian fish migrant, the hardyhead silverside Atherinomorus lacunosus. J. Exp. Mar. Biol. Ecol. 273:143–149

    Article  Google Scholar 

  • Crow JF, Kimura M (1970). An Introduction to Population Genetics Theory. Harper and Row Publishers, New York

    Google Scholar 

  • Durrett R, Buttel L, Harrison R (2000). Spatial models for hybrid zones. Heredity 84:9–19

    Article  PubMed  Google Scholar 

  • Esa YB, Waters JM, Wallis GP (2000). Introgressive hybridization between Galaxias depressiceps and Galaxias sp D (Teleostei: Galaxiidae) in Otago, New Zealand: Secondary contact mediated by water races. Conserv. Genet. 1:329–339

    Article  CAS  Google Scholar 

  • Ford MJ, Teel D, van Doornik DM, Kuligowski D, Lawson PW (2004). Genetic population structure of central Oregon Coast soho salmon (Oncorhynchus kisutch). Conserv. Genet. 5:797–812

    Article  CAS  Google Scholar 

  • Garcia-Meunier P, Martel C, Pigeot J, Chevalier G, Blanchard G, Goulletquer P, Robert S, Sauriau P-G (2002). Recent invasions of the Japanese oyster drill along the French Atlantic coast: identification of specific molecular markers that differentiate Japanese, Ocinebrellus inornatus, and European, Ocenebra erinacea, oyster drills. Aquat. Living Resour. 15:67–71

    Article  Google Scholar 

  • Geller JB, Walton ED, Grosholz ED, Ruiz GM (1997). Cryptic invasions of the crab Carcinus detected by molecular phylogeography. Mol. Ecol. 6:901–906

    Article  PubMed  CAS  Google Scholar 

  • Hansen MM (2002) Estimating the long-term effects of stocking domesticated trout into wild brown trout (Salmo trutta) populations: an approach using microsatellite DNA analysis of historical and contemporary samples. Mol. Ecol. 11:1003–1015

    Article  PubMed  CAS  Google Scholar 

  • Hansson MC, Bensch S, Brännström O (2000). Range expansion and the possibility of an emerging contact zone between two subspecies of Chiffchaff Phylloscopus collybita spp. J. Avian Biol. 31:548–558

    Article  Google Scholar 

  • Hartl DL, Clark AG (1989). Principles of Population Genetics. Sinauer Ass., Inc. Sunderland, MA

    Google Scholar 

  • Hewitt GM (2000). The genetic legacy of the quaternary ice ages. Nature 405:907–913

    Article  PubMed  CAS  Google Scholar 

  • Ibrahim KM, Nichols RA, Hewitt GM (1996). Spatial patterns of genetic variation generated by different forms of dispersal during range expansion. Heredity 77:282–291

    Article  Google Scholar 

  • Jürss K, Röhner M, Bastrop R. (1999). Enzyme activities and allozyme polymorphism in two genetic types (or sibling species) of the genus Marenzelleria (Polychaeta: Spionoidae) in Europe. Mar. Biol. 135:489–496

    Article  Google Scholar 

  • Konoshi M, Hosoya K, Takata K (2003). Natural hybridization between endangered and introduced species of Pseudorasbora, with their genetic relationships and characteristics inferred from allozyme analyses. J. Fish Biol. 63:213–231

    Article  CAS  Google Scholar 

  • Lee CE (2002). Evolutionary genetics of invasive species. Trends Ecol. Evol. 17:386–391

    Article  Google Scholar 

  • Leppäkoski E, Gollasch S, Olenin S (2002). Invasive Aquatic Species of Europe – Distribution, Impact and Management. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Malm JU, Prentice HC (2002). Immigration history and gene dispersal: allozyme variation in Nordic populations of the red campion, Silene dioica (Caryophyllaceae). Biol. J. Linn. Soc. 77:23–34

    Article  Google Scholar 

  • Mátyás G, Sperisen C (2001). Chloroplast DNA polymorphism provide evidence for postglacial re-colonisation of oaks (Quercus spp.) across the Swiss Alps. Theor. Appl. Genet. 102:12–20

    Article  Google Scholar 

  • May B, Marsden JE (1992). Genetic identification and implications of a second invasive species of dreissenid mussel in the Great Lakes. Can. J. Fish. Aquat. Sci. 49:1501–1506

    Article  Google Scholar 

  • Mezzera M, Largiadér CR (2001). Comparative analysis of introgression at three marker classes: a case study in a stocked population of brown trout. J. Fish Biol. 59:289–305

    Article  Google Scholar 

  • Müller JC, Griebeler EM (2002). Genetics of invasive species. In: Leppäkoski E, Gollasch S, Olenin S (eds). Invasive aquatic species of Europe - distribution, impact and management. Kluwer Academic Publishers, Dordrecht, pp 173–182

    Google Scholar 

  • Müller J, Schramm S (2001). A third Dikerogammarus invader is located in front of Vienna. Lauterbornia 41:49–52

    Google Scholar 

  • Müller J, Wöll S, Fuchs U, Seitz A (2001). Genetic interchange of Dreissena polymorpha populations across a canal. Heredity 86:103–109

    Article  PubMed  Google Scholar 

  • Müller JC, Hidde D, Seitz A (2002). Canal construction destroys the barrier between major European invasion lineages of the zebra mussel. Proc. R. Soc. Lond. B 269:1139–1142

    Article  Google Scholar 

  • Pimentel D, Lach L, Zuniga R, Morrison D (2000) Environmental and economic costs of nonindigenous species in the United States. Bioscience 50:53–65

    Article  Google Scholar 

  • Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1992). Numerical recipes in C. The Art of Scientific Computing. 2nd edn Cambridge University Press, Cambridge

    Google Scholar 

  • Randell RA, Howarth D, Morden C (2004). Genetic analysis of natural hybrids between endemic and alien Rubus (Rosaceae). Conserv. Genet. 5:217–230

    Article  CAS  Google Scholar 

  • Roy MS, Sponer R (2001). Evidence of a human-mediated invasion of the tropical western Atlantic by the world’s most common brittlestar’. Proc. R. Soc. Lond. B 269:1017–1023

    Article  Google Scholar 

  • Schneider S, Roessli D, Excoffier L (2000). Arlequin ver 2.000. A Software for Population Genetics Data Analysis. Genetics and Biometry Laboratory, University of Geneva, Switzerland

    Google Scholar 

  • Sokal RS, Rohlf FJ (1994). Biometry. W.H. Freeman and Company, New York

    Google Scholar 

  • Taberlet P, Swenson JE, Sandegren F, Bjärvall A (1994). Localization of a contact zone between two highly divergent mitochondrial DNA lineages of the Brown Bear Ursus arctos in Scandinavia. Conserv. Biol. 9:1255–1261

    Google Scholar 

  • Taberlet P, Fumagalli L, Wust-Saucy AG, Cosson J-P (1998). Comparative phylogeography and postglacial colonisation of Europe. Mol. Ecol. 7:453–464

    Article  PubMed  CAS  Google Scholar 

  • Thienemann A (1950). Verbreitungsgeschichte der Süßwassertierwelt Europas. In: Thienemann A (eds). Die Binnengewässer, XVIII. Schweizerbart’scher Verlag, Stuttgart

    Google Scholar 

  • Vaino J, Väinölä R (2003). Refugial races and postglacial colonization history of the freshwater amphipod Gammarus lacustris in Northern Europe. Biol. J. Linn. Soc. 79:523–542

    Article  Google Scholar 

  • Vallianatos M, Lougheed SC, Boag PT (2001). Phylogeography and genetic characteristics of a putative secondary-contact zone of the loggerhead shrike in central and eastern North America. Can. J. Zool. 79:2221–2227

    Article  Google Scholar 

  • Vorburger C, Reyer H-U (2003). A genetic mechanism of species replacement in European waterfrogs?. Conserv. Genet. 4:141–155

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the paper discussion group at the Dept. of Ecology, University of Mainz, for their helpful comments on an earlier version of the manuscript. We are also very grateful to David Posada, Carles Vilá and one anonymous referee whose comments significantly improved the quality of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eva M. Griebeler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Griebeler, E., Müller, J. & Seitz, A. Spatial genetic patterns generated by two admixing genetic lineages: a simulation study. Conserv Genet 7, 753–766 (2006). https://doi.org/10.1007/s10592-005-9111-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-005-9111-8

Keywords

Navigation