Skip to main content

Advertisement

Log in

Molecular evidence for historical and recent population size reductions of tiger salamanders (Ambystoma tigrinum) in Yellowstone National Park

  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

Population declines caused by natural and anthropogenic factors can quickly erode genetic diversity in natural populations. In this study, we examined genetic variation within 10 tiger salamander populations across northern Yellowstone National Park in Wyoming and Montana, USA using eight microsatellite loci. We tested for the genetic signature of population decline using heterozygosity excess, shifts in allele frequencies, and low ratios of allelic number to allelic size range (M-ratios). We found different results among the three tests. All 10 populations had low M-ratios, five had shifts in allele frequencies and only two had significant heterozygosity excesses. These results support theoretical expectations of different temporal signatures among bottleneck tests and suggest that both historical fish stocking, recent, sustained drought, and possibly an emerging amphibian disease have contributed to declines in effective population size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Adams EM, Jones AG, Arnold SJ (2005) Multiple paternity in a natural population of asalamander with long-term sperm storage. Mol. Ecol., 14, 1803–1810

    Article  PubMed  Google Scholar 

  • Alford RA, Richards SJ (1999) Global amphibian declines: A problem in applied ecology. Annu. Rev. Ecol. Syst. 30:133–165

    Article  Google Scholar 

  • Amos W, Balmford A (2001) When does conservation genetics matter?. Heredity 87:257–265

    Article  PubMed  CAS  Google Scholar 

  • Anderson LW, Fog K, Damgaard C (2004) Habitat fragmentation causes bottlenecks andinbreeding in the European tree frog (Hyla arborea). Proc. Roy. Soc. London B, 271, 1293–1302

    Article  Google Scholar 

  • Beebee T, Rowe G (2001) Application of genetic bottleneck testing to the investigation of amphibian declines: A case study with natterjack toads. Conserv. Biol. 15:266–270

    Article  Google Scholar 

  • Beerli P (2003) Migrate: documentation and program, part of LAMARC. Version 1.7.3. Distributed over the internet at http://www.evolution.genetics.washington.edu/lamarc.html.

  • Brunner JL, Schock DM, Davidson EW, Collins JP (2004) Intraspecific reservoirs: Complex life history and the persistence of a lethal ranavirus. Ecology 85:560–566

    Article  Google Scholar 

  • Buhlmann KA, Mitchell JC (2000) Age of adult Eastern Tiger Salamanders (Ambystoma tigrinum tigrinum) in a Virginia sinkhole pond complex: Implications for conservation. J. Elisha Mitch. Sci. Soc. 116:239–244

    Google Scholar 

  • Collins JP, Storfer A (2003) Global amphibian declines: sorting the hypotheses. Divers. Distrib. 9:89–98

    Article  Google Scholar 

  • Collins JP, Jones TR, Berna HA (1988) Conserving genetically distinctive populations: the case of the Huachuca tiger salamander (Ambystoma tigrinum stebbinsi). In: Szaro RC, Severson KC, Patton DR (eds) Management of Amphibians, Reptiles and Small Mammals in North America. SDA Forest Service GTR-RM-166 Rocky Mountain Forest and Range Experiment Station, Fort Collins CO, pp 45–53

    Google Scholar 

  • Cornuet JM, Luikart G (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144:2001–2014

    PubMed  CAS  Google Scholar 

  • Curtis JMR, Taylor EB (2003) The genetic structure of coastal giant salamanders(Dicamptodon tenebrosus) in a managed forest. Biol. Conserv., 115, 45–54

    Article  Google Scholar 

  • Di Rienzo A, Peterson AC, Garza JC, et al. (1994) Mutational processes of simple sequence repeat loci in human populations. Proc. Natl. Acad. Sci. U.S.A 91:3166–3170

    Article  PubMed  CAS  Google Scholar 

  • Dunham JB, Pilliod DS, Young MK (2004) Assessing the consequences of nonnative trout in headwater ecosystems in western North America. Fisheries 29:18–26

    Article  Google Scholar 

  • Garza JC, Williamson EG (2001) Detection of reduction in population size using data from microsatellite loci. Mol. Ecol. 10:305–318

    Article  PubMed  CAS  Google Scholar 

  • Harley EH (2002) AGARst: a program for calculating allele frequencies, Gst and Rst from microsatellite data plus a number of other population genetic estimates and outputting files formatted for various other population genetic programs, http://www.web.uct.ac.za/depts/chempath/genetic.htm

  • Hedrick PW (2004) Recent developments in conservation genetics. For. Ecol. Manage. 197:3–19

    Article  Google Scholar 

  • Jancovich JK, Davidson EW, Morado FJ, Jacobs BL, Collins JP (1997) Isolation of a lethal virus from the endangered tiger salamander Ambystoma tigrinum stebbinsi. Dis. Aquat. Organ. 31:161–167

    Article  Google Scholar 

  • Jancovich JK, Davidson EW, Parameswaran N, Mao J, Chinchar VG, Collins JP, Jacobs BL, Storfer A (2005) Evidence for emergence of an amphibian iridoviral disease because of human-enhanced spread. Mol. Ecol. 14:213–224

    Article  PubMed  CAS  Google Scholar 

  • Jehle R, Wilson GA, Arntzen JW, Burke T (2005) Contemporary gene flow and thespatio-temporal genetic structure of subdivided new populations (Trituruscristatus, T. marmoratus). J. Evol. Biol., 18, 619–628

    Article  PubMed  CAS  Google Scholar 

  • Luikart G, Allendorf FW, Cornuet J-M, Sherwin WB (1998) Distortion of allele frequency distributions provides a test for recent population bottlenecks. J. Hered. 89:238–247

    Article  PubMed  CAS  Google Scholar 

  • Mao J, Tham TN, Gentry GA, Aubertin A, Chinchar VG (1996) Cloning, sequence analysis and expression of the major capsid protein of the iridovirus frog virus 3. Virology 216:431–436

    Article  PubMed  CAS  Google Scholar 

  • Mech SG, Storfer A, Ernst JA, Reudink MW, Maloney SC (2003) Polymorphic microsatellite loci for tiger salamanders, Ambystoma tigrinum. Mol. Ecol. Notes 3:79–81

    Article  CAS  Google Scholar 

  • Myers EM, Zamudio KR (2004) Multiple paternity in an aggregate breeding amphibian:the effect of reproductive skew on estimates of male reproductive success.Mol. Ecol., 13, 1951–1963

    Article  PubMed  CAS  Google Scholar 

  • Patla DA, Peterson CR (2004) Amphibian and reptile inventory and monitoring: Grand Teton and Yellowstone National Parks. 2000–2003 Final Report.

  • Pearman PB, Garner TWJ (2005) Susceptibility of Italian agile frog populations to an emerging strain of Ranavirus parallels population genetic diversity. Ecol. Lett., 8, 401–408

    Article  Google Scholar 

  • Pechmann HK, Scott DE, Semlitsch RD, Caldwell JP, Vitt LJ, Gibbons JW (1991) Declining amphibian populations: the problem of separating human impacts from natural fluctuations. Science 253:892–895

    Article  PubMed  Google Scholar 

  • Semlitsch RD (2003) Conservation of pond-breeding amphibians. In: Semlitsch RD (eds) Amphibian Conservation. Smithsonian Institution, Washington D.C, pp 8–23

    Google Scholar 

  • Semlitsch RD, Scott DE, Pechmann JHK, Gibbons JW (1996) Structure and dynamics of an amphibian community: Evidence from a 16-year study of a natural pond. In: Cody ML, Smallwood JA (eds) Long-term Studies of Vertebrate Communities. Academic Press, San Diego CA, pp 217–248

    Chapter  Google Scholar 

  • Spear SF, Peterson CR, Matocq MD, Storfer A (2005) Landscape genetics of the blotched tiger salamander (Ambystoma tigrinum melanostictum). Mol. Ecol., 14, 2553–2564

    Google Scholar 

  • Stuart SN, Chanson JS, Cox NA, Young BE, Rodrigues ASL, Fischman DL, Waller RW (2004) Status and trends of amphibian declines and extinctions worldwide. Science 306:1783–1786

    Article  PubMed  CAS  Google Scholar 

  • Tyler, TJ, Liss WJ, Ganio LM, Larson GL, Hoffman RL, Deimling E, Lomnicky G (1998) Interaction between introduced trout and larval salamanders (Ambystoma macrodactylum) in high elevation lakes. Conserv. Biol. 12:94–105

    Article  Google Scholar 

  • Varley JD (1981) A history of fish stocking activites in Yellowstone National Park between 1881–1980. USDI National Park Service, Yellowstone National Park Information Paper No. 35

Download references

Acknowledgements

This project was supported by the University of Wyoming-National Park Service Research Station, the Idaho State University Graduate Student Research and Scholarship Committee, the Idaho State University Department of Biological Sciences and NSF IBN-0213851 to A.S. G. Elrod, T.␣Elrod, D. Jochimsen, A.A. Spear, A.M Spear, B. Spear and K. Spear helped collect tissue samples. K. Lew provided assistance with the laboratory work. We thank C. Hendrix and the National Park Service for granting permission to work in Yellowstone National Park. This research was approved by the Animal Welfare Committee at Idaho State University (#02-10-463).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen F. Spear.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spear, S.F., Peterson, C.R., Matocq, M.D. et al. Molecular evidence for historical and recent population size reductions of tiger salamanders (Ambystoma tigrinum) in Yellowstone National Park. Conserv Genet 7, 605–611 (2006). https://doi.org/10.1007/s10592-005-9095-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-005-9095-4

Keywords

Navigation