Skip to main content

Advertisement

Log in

Limited genetic differentiation among breeding, molting, and wintering groups of the threatened Steller’s eider: the role of historic and contemporary factors

  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

Due to declines in the Alaska breeding population, the Steller’s eider (Polysticta stelleri) was listed as threatened in North America in 1997. Periodic non-breeding in Russia and Alaska has hampered field-based assessments of behavioral patterns critical to recovery plans, such as levels of breeding site fidelity and movements among three regional populations: Atlantic-Russia, Pacific-Russia and Alaska. Therefore, we analyzed samples from across the species range with seven nuclear microsatellite DNA loci and cytochrome b mitochondrial (mt)DNA sequence data to infer levels of interchange among sampling areas and patterns of site fidelity. Results demonstrated low levels of population differentiation within Atlantic and Pacific nesting areas, with higher levels observed between these regions, but only for mtDNA. Bayesian analysis of microsatellite data from wintering and molting birds showed no signs of sub-population structure, even though band-recovery data suggests multiple breeding areas are present. We observed higher estimates of F-statistics for female mtDNA data versus male data, suggesting female-biased natal site fidelity. Summary statistics for mtDNA were consistent with models of historic population expansion. Lack of spatial structure in Steller’s eiders may result largely from insufficient time since historic population expansions for behaviors, such as natal site fidelity, to isolate breeding areas genetically. However, other behaviors such as the periodic non-breeding observed in Steller’s eiders may also play a more contemporary role in genetic homogeneity, especially for microsatellite loci.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson MG, Rhymer JM, Rowher FC (1992). Philopatry dispersal and the genetic structure of waterfowl populations. In: Batt BD, Afton AD, Anderson MG, Ankney CD, Johnson DH, Kadlec JA, Krapu GL. (eds). Ecology and Management of Breeding Waterfowl. University of Minnesota Press, Minneapolis Minnesota , pp. 365–395

    Google Scholar 

  • Anonymous (1997) Endangered and threatened wildlife and plants: threatened status for the Alaska breeding population of the Steller’s eider. U.S. Federal Register 62 (112): 31748–31757

    Google Scholar 

  • Aris-Brosou S, Excoffier L (1996) The impact of population expansion and mutation rate heterogeneity on DNA sequence polymorphism. Mol. Biol. Evol. 13: 494–504

    PubMed  CAS  Google Scholar 

  • Avise JC, Alisauskas RT, Nelson WS, Ankney CD (1992) Matriarchal population genetic structure in an avian species with female natal philopatry. Evolution, 46, 1804–1096

    Article  Google Scholar 

  • Avise JC (2000) Phylogeography: The History and Formation of Species. Harvard University Press, Cambridge, Massachusetts

    Google Scholar 

  • Buchholz WG, Pearce JM, Pierson BJ, Scribner KT (1998) Dinucleotide repeat polymorphisms in waterfowl (family Anatidae): characterization of a sex-linked (Z-specific) and 14 bi-parentally inherited loci. J. Anim. Genet., 29: 323–325

    CAS  Google Scholar 

  • Burnham KP, Anderson DR (1998) Model selection and inference: a practical information-theoretic approach. Springer-Verlag, New York, New York

    Google Scholar 

  • Callen DF, Thompson AD, Shen Y, Phillips HA, Richards RI, Mulley JC, Sutherland GR (1993) Incidence and origin of "null" alleles in the (AC)n microsatellite markers. Am. J. Hum. Genet., 52: 922–927

    PubMed  CAS  Google Scholar 

  • Camphuysen CJ, Berrevoets CM, Cremers HJ, Dekinga A, Dekker R, Ens BJ, van der Have TM, Kats RK, Kuiken T, Leopold MF (2002) Mass mortality of common eiders (Somateria mollissima) in the Dutch Wadden Sea, winter 1999/2000: starvation in a commercially exploited wetland of international importance. Biol. Conserv. 106: 303–317

    Article  Google Scholar 

  • Clement M, Posada D, Crandall D (2000) TCS: a computer programme to estimate gene genealogies. Mol. Ecol., 9: 1657

    Article  CAS  Google Scholar 

  • Congdon BC, Piatt JH, Martin K, Friesen VL (2000) Mechanisms of population differentiation in marbled murrelets: historical versus contemporary processes. Evolution 54: 974–986

    PubMed  CAS  Google Scholar 

  • Cronin MA, Grand JB, Esler D, Derksen DV, Scribner KT (1996) Breeding populations of northern pintails have similar mitochondrial DNA. Can. J. Zool. 74: 992–999

    Article  Google Scholar 

  • Dau CP, Flint PL, Petersen MR (2000) Distribution of recoveries of Steller’s eiders banded on the lower Alaska Peninsula, Alaska. J. Field Ornith. 71: 541–548

    Google Scholar 

  • Donne-Gousse C, Laudet V, Hanni C (2002) A molecular phylogeny of Anseriformes based on mitochondrial DNA analysis. Mol. Phylogen. Evol. 23: 339–356

    Article  CAS  Google Scholar 

  • Eggert LS, Mundy NI, Woodruff DS (2004) Population structure of loggerhead shrikes in the California Channel Islands. Mol. Ecol. 13: 2121–2133

    Article  PubMed  CAS  Google Scholar 

  • Fields R, Scribner KT (1997) Isolation and characterization of novel waterfowl microsatellite loci, cross-species comparisons and research applications. Mol. Ecol., 6: 160–164

    Article  Google Scholar 

  • Flint PL, Herzog MP (1999) Breeding of Steller’s eiders, Polysticta stelleri, on the Yukon-Kuskokwim Delta, Alaska. Can. Field Nat. 113: 306–308

    Google Scholar 

  • Flint PL, Fowler AC, Rockwell RF (1999) Modeling bird mortality associated with the M/V Citrus oil spill off St. Paul Island, Alaska. Ecol. Model. 117: 261–267

    Article  Google Scholar 

  • Flint PL, Petersen MR, Dau CP, Hines JE, Nichols JD (2000) Annual survival and site fidelity of Steller’s eiders molting along the Alaska Peninsula. J. Wild. Manag. 64:261–268

    Article  Google Scholar 

  • Fredrickson LH (2001) Steller’s eider (Polysticta stelleri). In: Poole A, Gill F (eds), The Birds of North America, No. 571. The Academy of Natural Sciences, Philadelphia Pennsylvania

    Google Scholar 

  • Fu YX (1997) Statistical tests on neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147: 915–925

    PubMed  CAS  Google Scholar 

  • Gay L, Defos Du Ray P, Mondain-Monval JY, Crochet PA (2004) Phylogeography of a game species: the red-crested pochard (Netta rufina) and consequences for its management. Mol. Ecol. 13: 1035–1045

    Article  PubMed  CAS  Google Scholar 

  • Guo SW, Thompson EA (1992) Performing the exact test of Hardy-Weinberg proportion for multiple alleles. Biometrics, 48: 361–372

    Article  PubMed  CAS  Google Scholar 

  • Haavie J, Saetre GP, Moum T (2000) Discrepancies in population differentiation at microsatellites, mitochondrial DNA and plumage colour in the pied flycatcher – inferring evolutionary processes. Mol. Ecol. 9: 1137–1148

    Article  PubMed  CAS  Google Scholar 

  • Hewitt G (2000) The genetic legacy of the Quaternary ice ages. Nature 405: 907–913

    Article  PubMed  CAS  Google Scholar 

  • Hodges JI, Eldridge WD (2001) Aerial surveys of eiders and other waterbirds on the eastern Arctic coast of Russia. Wildfowl 52: 127–142

    Google Scholar 

  • Jones RD (1965) Returns from Steller’s eiders banded at Izembek Bay, Alaska. The Wildfowl Trust 16: 83–85

    Google Scholar 

  • Kertell K (1991) Disappearance of the Steller’s eider from the Yukon-Kuskokwim Delta, Alaska. Arctic 44: 177–187

    Google Scholar 

  • Kvist L, Ruokonen M, Lumme J, Orell M (1999) The colonization history and present-day population structure of the European great tit (Parus major major). Heredity 82: 495–502

    Article  PubMed  Google Scholar 

  • Lanctot RB, Goatcher B, Scribner KT, Talbot S, Pierson B, Esler D, Zwiefelhofer D (1999) Harlequin duck recovery from the Exxon Valdez oil spill: A population genetics perspective. Auk, 116: 781–791

    Google Scholar 

  • Liebers D, Helbig AJ (2002) Phylogeography and colonization history of lesser black-backed gulls (Larus fuscus) as revealed by mtDNA sequences. J. Evol. Bio., 15: 1021–1033

    Article  CAS  Google Scholar 

  • Lopez JV, Yuhki N, Masuda R, Modi M, O’Brien SJ (1994) Numt, a recent transfer and tandem amplification of mitochondrial DNA to the nuclear genome of the domestic cat. J. Mol. Evol., 39: 174–190

    PubMed  CAS  Google Scholar 

  • Mallek EJ (2002) Aerial breeding pair surveys of the Arctic Coastal Plain of Alaska, 2001. Unpubl. report. US Fish and Wildlife Service, Fairbanks, Alaska

  • McCracken KG, Sheldon FH (1997) Avian vocalizations and phylogenetic signal. Proc. Nat. Acad. Sci. USA, 94: 3833–3836

    Article  PubMed  CAS  Google Scholar 

  • McCracken KG, Johnson WP, Sheldon FH (2001) Molecular population genetics, phylogeography, and conservation biology of the mottled duck (Anas fulvigula). Conserv. Genet. 2: 87–102

    Article  CAS  Google Scholar 

  • Mehl KR, Alisauskas RT, Hobson KA, Kellett DK. (2004) To winter east or west? Heterogeneity in winter philopatry in a central-arctic population of King Eiders. Condor 106: 241–251

    Article  Google Scholar 

  • Nei M (1987) Molecular Evolutionary Genetics. Columbia University Press New York, New York

    Google Scholar 

  • Nei M, Tajima F (1983) Maximum likelihood estimation of the number of nucleotide substitutions from restriction site data. Genetics 105: 207–217

    PubMed  CAS  Google Scholar 

  • Nesje M, Røed KH, Lifjeld JT, Lindberg P, Steen OF (2000) Genetic relationships in the peregrine falcon (Falco peregrinus) analyzed by microsatellite DNA markers. Mol. Ecol. 9: 53–60

    Article  PubMed  CAS  Google Scholar 

  • Niemuth ND, Solberg JW (2003) Response of waterbirds to number of wetlands in the Prairie Pothole region of North Dakota, U.S.A. Waterbirds 26: 233–238

    Article  Google Scholar 

  • Nygård TB, Larsen BH, Follestad A, Strann KB (1988) Numbers and distribution of wintering waterfowl in Norway. Wildfowl 39: 164–176

    Google Scholar 

  • Nygård TB, Frantzen B, Svazas S (1995) Steller’s eiders Polysticta stelleri wintering in Europe: numbers, distribution, and origin. Wildfowl 46: 140–155

    Google Scholar 

  • Pearce JM, Pierson BJ, Talbot SL, Derksen DV, Kraege D, Scribner KT (2000) A genetic evaluation of morphology used to identify harvested Canada geese. J. Wild. Manag. 64: 863–874

    Article  Google Scholar 

  • Pearce JM, Talbot SL, Pierson BJ, Scribner KT, Dickson DL, Mosbech A (2004) Lack of spatial genetic structure among nesting and wintering king eiders. Condor 106: 229–240

    Article  Google Scholar 

  • Petersen MR (1981) Populations, feeding ecology and molt of Steller’s eiders. Condor 83: 256–262

    Article  Google Scholar 

  • Petersen MR, Bustnes JO, Systad GH (2005) Distribution patterns of Steller’s eiders Polysticta stelleri in northern Norway and northwest Russia. J. Avian Bio., 37, In Press

  • Posada D, Crandall KA (1998) Modeltest: testing the model of DNA substitution. Bioinformatics 14: 817–818

    Article  PubMed  CAS  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly PJ (2000) Inference of population structure using multilocus genotype data. Genetics 155: 945–959

    PubMed  CAS  Google Scholar 

  • Quakenbush LT, Day RH, Anderson BA, Pitelka FA, McCaffery BJ (2002) Historical and present breeding season distribution of Steller’s eiders in Alaska. West. Birds 33: 99–120

    Google Scholar 

  • Quakenbush LT, Suydam R, Obritschkewitsch T, Deering M (2004) Breeding biology of Steller’s eiders (Polysticta stelleri) near Barrow, Alaska, 1991–1999. Arctic 57: 166–182

    Google Scholar 

  • Raymond M, Rousset F (1995) GENEPOP Version 3.2a: Population genetics software for exact tests and ecumenicism. J. Hered. 86: 248–249

    Google Scholar 

  • Robertson GJ, Cooke F (1999) Winter philopatry in migratory waterfowl. Auk 116: 20–34

    Google Scholar 

  • Roeder AD, Marshall RK, Mitchelson AJ, Visagathilagar T, Ritchie PA, Love DR, Pakai TJ, McPartlan HC, Murray ND, Robinson NA, Kerry KR, Lambert DM (2001) Gene flow on the ice: genetic differentiation among Adelie penguin colonies around Antarctica. Mol. Ecol. 10: 1645–1656

    Article  PubMed  CAS  Google Scholar 

  • Rogers AR (1995) Genetic evidence for a Pleistocene population explosion. Evolution 49: 608–615

    Article  Google Scholar 

  • Rogers AA, Harpending HC (1992) Population growth makes waves in the distribution of pairwise genetic differences. Mol. Biol. Evol. 9: 552–569

    PubMed  CAS  Google Scholar 

  • Rozas J, Rozas R (1999) DNASP, version 3.1. An integrated programme for molecular population genetics and molecular evolution analysis. Bioinformatics 15: 174–175

    Article  PubMed  CAS  Google Scholar 

  • Schneider S, Roessli D, Excoffier L (2000) Arlequin Version 2.0: A Software for Population Genetics Data Analysis. Genetics and Biometry Laboratory, Department of Anthropology, University of Geneva, Switzerland

    Google Scholar 

  • Scribner KT, Petersen MR, Fields RL, Talbot SL, Pearce JM, Chesser RK (2001) Sex-biased gene flow in spectacled eiders (Anatidae): inferences from molecular markers with contrasting modes of inheritance. Evolution 55: 2105–2115

    PubMed  CAS  Google Scholar 

  • Scribner KT, Talbot SL, Pearce JM, Pierson BJ, Bollinger KS, Derksen DV (2003) Phylogeography of Canada geese (Branta canadensis) in Western North America. Auk 120: 889–907

    Article  Google Scholar 

  • Sefc KM, Payne RB, Sorenson MD (2003) Microsatellite amplification from museum feather samples: effects of fragment size and template concentration on genotyping errors. Auk 120, 982–989

    Article  Google Scholar 

  • Solovieva DV, Phil S, Fox AD, Bustnes JO (1998) Steller’s eider (Polysticta stelleri). In: The Birds of the Western Palearctic (eds. Perrins CM, Snow DW). Oxford University Press

  • Solovieva DV (1999) Biology and Bioenergetics of the Steller’s Eide (Polysticta stelleri). Ph.D. dissertation, Russian Academy of Sciences, Zoological Institute, St. Petersburg, Russia

  • Sorenson MD, Quinn TW (1998) Numts: a challenge for avian systematics and population biology. Auk 115: 214–221

    Google Scholar 

  • Sorenson MD, Ast JC, Dimcheff DE, Yuri T, Mindell DP (1999) Primers for a PCR-based approach to mitochondrial genome sequencing in birds and other vertebrates. Mol. Phylogen. Evol. 12: 105–114

    Article  CAS  Google Scholar 

  • Spruell P, Hemmingsen AR, Howell PJ, Kanada N, Allendorf FW (2003) Conservation genetics of bull trout: Geographic distribution of variation at microsatellite loci. Conserv. Genet. 4: 17–29

    Article  CAS  Google Scholar 

  • Tajima F (1989) The amount of DNA polymorphism maintained in a finite population when the neutral mutation rate varies among sites. Genetics. 143: 1457–1465

    Google Scholar 

  • Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol. Biol. Evol. 10: 512–526

    PubMed  CAS  Google Scholar 

  • Templeton AR, Crandall KA, Sing CF (1992) A cladistic analysis of phenotypic association with haplotypes inferred from restriction endonuclease mapping III Cladogram estimation. Genetics. 132: 619–633

    PubMed  CAS  Google Scholar 

  • Tiedemann R, Paulus KB, Scheer M, Von Kistowski KG, Skirnisson K, Bloch D, Dam M (2004) Mitochondrial DNA and microsatellite variation in the eider duck (Somateria mollissima) indicate stepwise postglacial colonization of Europe and limited current long-distance dispersal. Mol. Ecol. 13: 1481–1494

    Article  PubMed  CAS  Google Scholar 

  • U.S.Fish and Wildlife Service and National Marine Fisheries Service (1996) Policy regarding the recognition of distinct vertebrate population segments under the Endangered Species Act. U.S. Federal Register 61: 4721–4725

    Google Scholar 

  • Wahlund S (1928) Composition of populations from the perspective of the theory of heredity. Hereditas 11: 65–105

    Article  Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38: 1358–1370

    Article  Google Scholar 

  • Zink RM, Drovetski SV, Rohwer S (2002) Phylogeographic patterns in the great spotted woodpecker Dendrocopos major across Eurasia. J. Avian Biol. 33: 175–178

    Article  Google Scholar 

Download references

Acknowledgments

We thank the following individuals for providing samples: P. Flint (US Geological Survey), B.␣Anderson (Alaska Biological Research, Inc.), R.␣Suydam (North Slope Borough), L. Quakenbush (Alaska Department of Fish and Game), A. Degtyarev (Yakutsk Institute of Biology), D. Solovieva (Lena Delta State Nature Reserve), C. Dau, P.␣Martin, T. Obirschkiwitz, T. Swem, N. Rojek (US Fish and Wildlife Service), and J.O. Bustnes (Norwegian Institute for Nature Research). K. Sage assisted with laboratory analyses. P. Flint, R. Lanctot, D. Esler, D. Derksen, members of the Steller’s eider Recovery Team, and two anonymous reviewers provided constructive comments on this manuscript. Financial support for analysis was provided by the US Fish and Wildlife Service, the Alaska SeaLife Center, and the US Geological Survey.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John M. Pearce.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pearce, J., Talbot, S., Petersen, M. et al. Limited genetic differentiation among breeding, molting, and wintering groups of the threatened Steller’s eider: the role of historic and contemporary factors. Conserv Genet 6, 743–757 (2005). https://doi.org/10.1007/s10592-005-9034-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-005-9034-4

Keywords

Navigation