Skip to main content
Log in

Fast inertial dynamic algorithm with smoothing method for nonsmooth convex optimization

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

In order to solve the minimization of a nonsmooth convex function, we design an inertial second-order dynamic algorithm, which is obtained by approximating the nonsmooth function by a class of smooth functions. By studying the asymptotic behavior of the dynamic algorithm, we prove that each trajectory of it weakly converges to an optimal solution under some appropriate conditions on the smoothing parameters, and the convergence rate of the objective function values is \(o\left( t^{-2}\right)\). We also show that the algorithm is stable, that is, this dynamic algorithm with a perturbation term owns the same convergence properties when the perturbation term satisfies certain conditions. Finally, we verify the theoretical results by some numerical experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data and code availability

The data and code that support the findings of this study are available from the corresponding author upon request.

References

  1. Álvarez, F.: On the minimizing property of a second-order dissipative system in Hilbert spaces. SIAM J. Control Optim. 38, 1102–1119 (2000)

    Article  MathSciNet  Google Scholar 

  2. Apidopoulos, V., Aujol, J.F., Dossal, Ch.: Convergence rate of inertial forward-backward algorithm beyond Nesterov’s rule. Math. Program. 180, 137–156 (2020)

    Article  MathSciNet  Google Scholar 

  3. Attouch, H., Cabot, A.: Asymptotic stabilization of inertial gradient dynamics with time-dependent viscosity. J. Differ. Equ. 263, 5412–5458 (2017)

    Article  MathSciNet  Google Scholar 

  4. Attouch, H., Cabot, A.: Convergence of damped inertial dynamics governed by regularized maximally monotone operators. J. Differ. Equ. 264, 7138–7182 (2018)

    Article  MathSciNet  Google Scholar 

  5. Attouch, H., Chbani, Z., Peypouquet, J., Redont, P.: Fast convergence of inertial dynamics and algorithms with asymptotic vanishing viscosity. Math. Program. 168, 123–175 (2018)

    Article  MathSciNet  Google Scholar 

  6. Attouch, H., Chbani, Z., Riahi, H.: Rate of convergence of the Nesterov accelerated gradient method in the subcritical case \(\alpha \le 3\). ESAIM-Control Optim. Calc. Var. 25, 34 (2019)

  7. Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithms for linear inverse problems. SIAM J. Imaging Sci. 2, 183–202 (2009)

    Article  MathSciNet  Google Scholar 

  8. Bian, W., Chen, X.: A smoothing proximal gradient algorithm for nonsmooth convex regression with cardinality penalty. SIAM J. Numer. Anal. 58, 858–883 (2020)

    Article  MathSciNet  Google Scholar 

  9. Bian, W., Chen, X.: Smoothing neural network for constrained non-Lipschitz optimization with applications. IEEE Trans. Neural Netw. Learn. Syst. 23, 399–411 (2012)

    Article  Google Scholar 

  10. Brézis, H.: Opérateurs maximaux monotones dans les espaces de Hilbert et équations d’évolution. Lecture Notes 5, North Holland (1972)

  11. Burke, J.V., Chen, X., Sun, H.: The subdifferential of measurable composite max integrands and smoothing approximation. Math. Program. 181(2), 229–264 (2020)

    Article  MathSciNet  Google Scholar 

  12. Cabot, A., Engler, H., Gadat, S.: On the long time behavior of second order differential equations with asymptotically small dissipation. Trans. Am. Math. Soc. 361, 5983–6017 (2009)

    Article  MathSciNet  Google Scholar 

  13. Cabot, A., Engler, H., Gadat, S.: Second order differential equations with asymptotically small dissipation and piecewise flat potentials. Electron. J. Differ. Equ. 17, 33–38 (2009)

    MathSciNet  MATH  Google Scholar 

  14. Chambolle, A., Dossal, Ch.: On the convergence of the iterates of the fast iterative shrinkage thresholding algorithm. J. Optim. Theory Appl. 166, 968–982 (2015)

    Article  MathSciNet  Google Scholar 

  15. Chen, X.: Smoothing methods for complementarity problems and their applications: a survey. J. Oper. Res. Soc. Japn. 43, 32–47 (2000)

    MathSciNet  MATH  Google Scholar 

  16. Chen, X.: Smoothing methods for nonsmooth, nonconvex minimization. Math. Program. 134, 71–99 (2012)

    Article  MathSciNet  Google Scholar 

  17. Fiori, S., Bengio, Y.: Quasi-geodesic neural learning algorithms over the orthogonal group: a tutorial. J. Mach. Learn. Res. 6(1), 743–781 (2005)

    MathSciNet  MATH  Google Scholar 

  18. Haraux, A.: Systèmes Dynamiques Dissipatifs et Applications. Recherches en Mathématiques Appliquées 17, Masson, paris (1991)

  19. Helmke, U., Moore, J.B.: Optimization and Dynamical Systems. Springer, London (1994)

  20. Kreimer, J., Rubinstein, R.Y.: Nondifferentiable optimization via smooth approximation: general analytical approach. Ann. Oper. Res. 39, 97–119 (1993)

    Article  MathSciNet  Google Scholar 

  21. May, R.: Asymptotic for a second order evolution equation with convex potential and vanishing damping term. Turk. J. Math. 41, 681–685 (2017)

    Article  MathSciNet  Google Scholar 

  22. Necoara, I., Suykens, J.: Application of a smoothing technique to decomposition in convex optimization. IEEE Trans. Autom. Control. 53, 2674–2679 (2008)

    Article  MathSciNet  Google Scholar 

  23. Nesterov, Y.: A method of solving a convex programming problem with convergence rate \(O(\frac{1}{k^2})\). Sov. Math. Dokl. 27, 372–376 (1983)

    Google Scholar 

  24. Nesterov, Y.: Gradient methods for minimizing composite functions. Math. Program. 140, 125–161 (2013)

    Article  MathSciNet  Google Scholar 

  25. Nesterov, Y.: Introductory Lectures on Convex Optimization: A Basic Course. Applied Optimization. Kluwer Academic Publishers, Boston (2004)

    Book  Google Scholar 

  26. Nesterov, Y.: Smooth minimization of nonsmooth functions. Math. Program. 103, 127–152 (2005)

    Article  MathSciNet  Google Scholar 

  27. Attouch, H., Goudou, X.: A continuous gradient-like dynamical approach to Pareto-optimization in Hilbert spaces. Set-Valued Var. Anal. 22(1), 189–219 (2014)

    Article  MathSciNet  Google Scholar 

  28. Polyak, B.T.: Introduction to Optimization. Publications Division, New York, Optimization Software (1987)

    MATH  Google Scholar 

  29. Polyak, B.T.: Some methods of speeding up the convergence of iteration methods. USSR Comput. Math. & Math. Phys. 4, 1–17 (1964)

    Article  Google Scholar 

  30. Shor, N.: Minimization Methods for Non-Differentiable Functions. Springer-Verlag, Berlin (1985)

    Book  Google Scholar 

  31. Su, W., Boyd, S., Candès, E.J.: A differential equation for modeling Nesterov’s accelerated gradient method: theory and insights. Neural Inf. Process. Syst. 27, 2510–2518 (2014)

    MATH  Google Scholar 

  32. Zhang, C., Chen, X.: A smoothing active set method for linearly constrained non-Lipschitz Nonconvex optimization. SIAM J. Optim. 30(1), 1–30 (2020)

    Article  MathSciNet  Google Scholar 

Download references

Funding

This work is funded by the National Natural Science Foundation of China (Nos: 11871178, 62176073).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Bian.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qu, X., Bian, W. Fast inertial dynamic algorithm with smoothing method for nonsmooth convex optimization. Comput Optim Appl 83, 287–317 (2022). https://doi.org/10.1007/s10589-022-00388-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-022-00388-6

Keywords

Mathematics Subject Classification

Navigation