Skip to main content
Log in

Markov–Dubins interpolating curves

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

A realistic generalization of the Markov–Dubins problem, which is concerned with finding the shortest planar curve of constrained curvature joining two points with prescribed tangents, is the requirement that the curve passes through a number of prescribed intermediate points/nodes. We refer to this generalization as the Markov–Dubins interpolation problem. We formulate this interpolation problem as an optimal control problem and obtain results about the structure of its solution using optimal control theory. The Markov–Dubins interpolants consist of a concatenation of circular (C) and straight-line (S) segments. Abnormal interpolating curves are shown to exist and characterized; however, if the interpolating curve contains a straight-line segment then it cannot be abnormal. We derive results about the stationarity, or criticality, of the feasible solutions of certain structure. In particular, any feasible interpolant with arc types of CSC in each stage is proved to be stationary, i.e., critical. We propose a numerical method for computing Markov–Dubins interpolating paths. We illustrate the theory and the numerical approach by four qualitatively different examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Artelys Knitro - Nonlinear optimization solver. https://www.artelys.com/knitro. Accessed 26 Oct 2017

  2. Andreani, R., Birgin, E.G., Martínez, J.M., Schuverdt, M.L.: On augmented Lagrangian methods with general lower-level constraints. SIAM J. Optim. 18(4), 1286–1309 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Agwu, N.N., Martin, C.F.: Optimal control of dynamical systems: application to spline approximations. Appl. Math. Comput. 97, 99–138 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  4. Aronna, M.S., Bonnans, J.F., Dmitruk, A.V., Lotito, P.A.: Quadratic order conditions for bang–singular extremals. Num. Alg. Contr. Optim. 2, 511–546 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Aronsson, G.: Perfect splines and nonlinear control theory. J. Approx. Theory 25, 142–152 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  6. Augustin, D., Maurer, H.: Second order sufficient conditions and sensitivity analysis for optimal multiprocess control problems. Control Cybern. 29, 11–31 (2000)

    MathSciNet  MATH  Google Scholar 

  7. Birgin, E.G., Martínez, J.M.: Practical Augmented Lagrangian Methods for Constrained Optimization. SIAM Publications, Philadelphia (2014)

    Book  MATH  Google Scholar 

  8. Boissonnat, J.-D., Cérézo, A., Leblond, J.: Shortest paths of bounded curvature in the plane. Plus courts chemins de courbure borée dans le plan, INRIA internal report (1991)

  9. Brunnett, G., Kiefer, J., Wendt, L.: Fair curves for motion planning. Int. J. Veh. Des. 21, 266–277 (1999)

    Article  Google Scholar 

  10. Clarke, F.H., Vinter, R.B.: Applications of multiprocesses. SIAM J. Control Optim. 27, 1048–1071 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dmitruk, A.V., Kaganovich, A.M.: Quadratic order conditions for an extended weak minimum in optimal control problems with intermediate and mixed constraints. Discrete Contin. Dyn. Syst. 29, 523–545 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dontchev, A.L.: Best interpolation in a strip. J. Approx. Theory 73, 334–342 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dontchev, A.L., Kolmanovski, I.: Best interpolation in a strip II: reduction to unconstrained convex optimization. Comput. Optim. Appl. 5, 233–251 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  14. Dontchev, A.L., Qi, H.-D., Qi, L., Yin, H.: A Newton method for shape-preserving spline interpolation. SIAM J. Optim. 13, 588–602 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  15. Dubins, L.E.: On curves of minimal length with a constraint on average curvature and with prescribed initial and terminal positions and tangents. Am. J. Math. 79, 497–516 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  16. Fourer, R., Gay, D.M., Kernighan, B.W.: AMPL: A Modeling Language for Mathematical Programming, 2nd edn. Brooks/Cole Publishing Company / Cengage Learning, Boston (2003)

    MATH  Google Scholar 

  17. Fredenhagen, S., Oberle, H.J., Opfer, G.: On the construction of optimal monotone cubic spline interpolations. J. Approx. Theory 96, 182–201 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gill, P.E., Murray, W., Saunders, M.A.: SNOPT: an SQP algorithm for large-scale constrained optimization. SIAM Rev. 47, 99–131 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. Goaoc, X., Kim, H.-S., Lazard, S.: Bounded-curvature shortest paths through a sequence of points using convex optimization. SIAM J. Comput. 42, 662–684 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Isaev, V.K.: To the theory of splines. Appl. Math. Comput. 217, 1095–1109 (2010)

    MathSciNet  MATH  Google Scholar 

  21. Isaiah, P., Shima, T.: Motion planning algorithms for the Dubins tavelling salesperson problem. Automatica 53, 247–255 (2015)

    Article  MATH  Google Scholar 

  22. Kaya, C.Y.: Markov–Dubins path via optimal control theory. Comput. Optim. Appl. 68(3), 719–747 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kaya, C.Y., Lucas, S.K., Simakov, S.T.: Computations for bang–bang constrained optimal control using a mathematical programming formulation. Optim. Control Appl. Meth. 25(6), 295–308 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kaya, C.Y., Maurer, H.: A numerical method for nonconvex multi-objective optimal control problems. Comput. Optim. Appl. 57(3), 685–702 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kaya, C.Y., Noakes, J.L.: A global control law with implications in time-optimal control. In: Proceedings of 33rd IEEE Conference on Decision and Control, Lake Buena Vista, FL, USA, 3823–3824 (1994)

  26. Kaya, C.Y., Noakes, J.L.: Computations and time-optimal controls. Optim. Control Appl. Methods 17, 171–185 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  27. Kaya, C.Y., Noakes, J.L.: Computational algorithm for time-optimal switching control. J. Optim. Theory App. 117, 69–92 (2003)

    Article  MATH  Google Scholar 

  28. Kaya, C.Y., Noakes, J.L.: Finding interpolating curves minimizing \(L^\infty \) acceleration in the Euclidean space via optimal control theory. SIAM J. Control Optim. 51, 442–464 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  29. Kreĭn, M.G., Nudel’man, A.A.: The Markov Moment Problem and Extremal Problems. American Mathematical Society (1977)

  30. Looker, J.R.: Constant speed interpolating paths, Defence Science and Technology Organization technical report DSTO-TN-0989 (2011)

  31. Markov, A.A.: Some examples of the solution of a special kind of problem on greatest and least quantities. Soobscenija Charkovskogo Matematiceskogo Obscestva 2–1(5,6), 250–276 (1889). (in Russian)

    Google Scholar 

  32. Maurer, H., Büskens, C., Kim, J.-H.R., Kaya, C.Y.: Optimization methods for the verification of second order sufficient conditions for bang–bang controls. Optim. Control Appl. Methods 26, 129–156 (2005)

    Article  MathSciNet  Google Scholar 

  33. McClure, D.E.: Perfect spline solutions of \(L_\infty \) extremal problems by control methods. J. Approx. Theory 15, 226–242 (1975)

    Article  MATH  Google Scholar 

  34. Micchelli, C.A., Smith, P.W., Swetits, J., Ward, J.D.: Constrained \(L_p\) approximation. Constr. Approx. 1, 93–102 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  35. Opfer, G., Oberle, H.J.: The derivation of cubic splines with obstacles by methods of optimization and optimal control. Numer. Math. 52, 17–31 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  36. Osmolovskii, N.P., Maurer, H.: Applications to Regular and Bang–Bang Control: Second-Order Necessary and Sufficient Optimality Conditions in Calculus of Variations and Optimal Control. SIAM Publications, Philadelphia (2012)

    Book  MATH  Google Scholar 

  37. Savla, K., Frazzoli, E., Bullo, F.: Traveling salesperson problems for the Dubins vehicle. IEEE Trans. Auto. Control 53, 1378–1391 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  38. Sussmann, H.J., Tang, G.: Shortest paths for the Reeds–Shepp car: a worked out example of the use of geometric techniques in nonlinear optimal control, Rutgers Center for Systems and Control (Sycon) Report 91–10 (1991)

  39. Wächter, A., Biegler, L.T.: On the implementation of a primal-dual interior point filter line search algorithm for large-scale nonlinear programming. Math. Progr. 106, 25–57 (2006)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Yalçın Kaya.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaya, C.Y. Markov–Dubins interpolating curves. Comput Optim Appl 73, 647–677 (2019). https://doi.org/10.1007/s10589-019-00076-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-019-00076-y

Keywords

Mathematics Subject Classification

Navigation