Skip to main content
Log in

A copositive approach for two-stage adjustable robust optimization with uncertain right-hand sides

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

We study two-stage adjustable robust linear programming in which the right-hand sides are uncertain and belong to a convex, compact uncertainty set. This problem is NP-hard, and the affine policy is a popular, tractable approximation. We prove that under standard and simple conditions, the two-stage problem can be reformulated as a copositive optimization problem, which in turn leads to a class of tractable, semidefinite-based approximations that are at least as strong as the affine policy. We investigate several examples from the literature demonstrating that our tractable approximations significantly improve the affine policy. In particular, our approach solves exactly in polynomial time a class of instances of increasing size for which the affine policy admits an arbitrarily large gap.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anstreicher, K.M.: Semidefinite programming versus the reformulation-linearization technique for nonconvex quadratically constrained quadratic programming. J. Glob. Optim. 43(2–3), 471–484 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ardestani-Jaafari, A., Delage, E.: The value of flexibility in robust location-transportation problem. Les Cahiers du GERAD G-2014-83, GERAD, HEC Montréal (2014)

  3. Ardestani-Jaafari, A., Delage, E.: Linearized robust counterparts of two-stage robust optimization problem with applications in operations management. Manuscript, HEC Montreal (2016)

  4. Ardestani-Jaafari, A., Delage, E.: Robust optimization of sums of piecewise linear functions with application to inventory problems. Oper. Res. 64(2), 474–494 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  5. Atamtürk, A., Zhang, M.: Two-stage robust network flow and design under demand uncertainty. Oper. Res. 55(4), 662–673 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ben-Tal, A., Boaz, G., Shimrit, S.: Robust multi-echelon multi-period inventory control. Eur. J. Oper. Res. 199(3), 922–935 (2009)

    Article  MATH  Google Scholar 

  7. Ben-Tal, A., Do Chung, B., Mandala, S.R., Yao, T.: Robust optimization for emergency logistics planning: risk mitigation in humanitarian relief supply chains. Transp. Res. Part B: Methodol. 45(8), 1177–1189 (2011)

    Article  Google Scholar 

  8. Ben-Tal, A., Golany, B., Nemirovski, A., Vial, J.-P.: Retailer-supplier flexible commitments contracts: a robust optimization approach. Manuf. Serv. Oper. Manag. 7(3), 248–271 (2005)

    Article  Google Scholar 

  9. Ben-Tal, A., Goryashko, A., Guslitzer, E., Nemirovski, A.: Adjustable robust solutions of uncertain linear programs. Math. Program. Ser. A 99, 351–376 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ben-Tal, A., Nemirovski, A.: Robust solutions of uncertain linear programs. Oper. Res. Lett. 25(1), 1–14 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bertsimas, D., de Ruiter, F.J.: Duality in two-stage adaptive linear optimization: faster computation and stronger bounds. INFORMS J. Comput. 28(3), 500–511 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bertsimas, D., Goyal, V., Lu, P.Y.: A tight characterization of the performance of static solutions in two-stage adjustable robust linear optimization. Math. Program. Ser. A 150(2), 281–319 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Bertsimas, D., Iancu, D.A., Parrilo, P.A.: A hierarchy of near-optimal policies for multistage adaptive optimization. IEEE Trans. Autom. Control 56(12), 2809–2824 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Bertsimas, D., Litvinov, E., Sun, X.A., Zhao, J., Zheng, T.: Adaptive robust optimization for the security constrained unit commitment problem. IEEE Trans. Power Syst. 28(1), 52–63 (2013)

    Article  Google Scholar 

  15. Burer, S.: On the copositive representation of binary and continuous nonconvex quadratic programs. Math. Program. Ser. A 120(2), 479–495 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Burer, S.: Copositive programming. In: Anjos, M., Lasserre, J. (eds.) Handbook of Semidefinite, Cone and Polynomial Optimization: Theory, Algorithms, Software and Applications. International Series in Operational Research and Management Science, pp. 201–218. Springer, Berlin (2011)

    Google Scholar 

  17. Burer, S.: A gentle, geometric introduction to copositive optimization. Math. Program. 151(1), 89–116 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Burer, S., Dong, H.: Representing quadratically constrained quadratic programs as generalized copositive programs. Oper. Res. Lett. 40, 203–206 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Chang, Y., Rao, S., Tawarmalani, M.: Robust validation of network designs under uncertain demands and failures. In: 14th USENIX Symposium on Networked Systems Design and Implementation (NSDI 17), pp. 347–362, Boston, MA (2017). USENIX Association

  20. Chen, X., Zhang, Y.: Uncertain linear programs: extended affinely adjustable robust counterparts. Oper. Res. 57(6), 1469–1482 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Delage, E., Iancu, D.A.: Robust Multistage Decision Making, chap. 2, pp. 20–46. INFORMS (2015)

  22. Doulabi, S.H.H., Jaillet, P., Pesant, G., Rousseau, L.-M.: Exploiting the structure of two-stage robust optimization models with integer adversarial variables. Manuscript, MIT (2016)

  23. Eichfelder, G., Jahn, J.: Set-semidefinite optimization. J. Convex Anal. 15, 767–801 (2008)

    MathSciNet  MATH  Google Scholar 

  24. Fonseca, R.J., Rustem, B.: International portfolio management with affine policies. Eur. J. Oper. Res. 223(1), 177–187 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. Gabrel, V., Lacroix, M., Murat, C., Remli, N.: Robust location transportation problems under uncertain demands. Discrete Appl. Math. 164, 100–111 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  26. Gorissen, B.L., Den Hertog, D.: Robust counterparts of inequalities containing sums of maxima of linear functions. Eur. J. Oper. Res. 227(1), 30–43 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  27. Grötschel, M., Lovász, L., Schrijver, A.: The ellipsoid method and its consequences in combinatorial optimization. Combinatorica 1(2), 169–197 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  28. Hadjiyiannis, M.J., Goulart, P.J., Kuhn, D.: A scenario approach for estimating the suboptimality of linear decision rules in two-stage robust optimization. In: 50th IEEE Conference on Decision and Control and European Control Conference (CDC-ECC), Orlando, FL, USA, Dec 12–15 (2011)

  29. Hanasusanto, G.A., Kuhn, D.: Conic programming reformulations of two-stage distributionally robust linear programs over wasserstein balls. arXiv preprint arXiv:1609.07505 (2016)

  30. Konno, H.: A cutting plane algorithm for solving bilinear programs. Math. Program. 11, 14–27 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  31. Lofberg, J.: Yalmip: a toolbox for modeling and optimization in matlab. In: Computer Aided Control Systems Design, 2004 IEEE International Symposium on, pp. 284–289. IEEE (2004)

  32. MOSEK ApS: The MOSEK Optimization toolbox for MATLAB Manual. Version 8.0 (Revision 28). https://docs.mosek.com/8.0/toolbox/index.html (2017)

  33. Pólik, I., Terlaky, T.: A survey of the S-lemma. SIAM Rev. 49(3), 371–418 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  34. Poss, M., Raack, C.: Affine recourse for the robust network design problem: between static and dynamic routing. Networks 61(2), 180–198 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  35. Schrijver, A.: Theory of linear and integer programming. Wiley-Interscience Series in Discrete Mathematics. Wiley, Chichester (1986). A Wiley-Interscience Publication

  36. Sherali, H.D., Adams, W.P.: A Reformulation-linearization Technique for Solving Discrete and Continuous Nonconvex Problems, vol. 31. Springer, Berlin (2013)

    MATH  Google Scholar 

  37. Solyalı, O., Cordeau, J.-F., Laporte, G.: The impact of modeling on robust inventory management under demand uncertainty. Manag. Sci. 62(4), 1188–1201 (2016)

    Article  Google Scholar 

  38. Wang, Q., Watson, J.P., Guan, Y.: Two-stage robust optimization for Nk contingency-constrained unit commitment. IEEE Trans. Power Syst. 28, 2366–2375 (2013)

    Article  Google Scholar 

  39. Wiesemann, W., Kuhn, D., Rustem, B.: Robust resource allocations in temporal networks. Math. Program. Ser. A 135(1), 437–471 (2011)

    MathSciNet  MATH  Google Scholar 

  40. Zeng, B., Zhao, L.: Solving two-stage robust optimization problems using a column-and-constraint generation method. Oper. Res. Lett. 41, 457–461 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  41. Zhao, L., Zeng, B.: Robust unit commitment problem with demand response and wind energy. In: Power and Energy Society General Meeting, 2012 IEEE, pp. 1–8. IEEE (2012)

  42. Zuluaga, L.F., Vera, J., Pea, J.: LMI approximations for cones of positive semidefinite forms. SIAM J. Optim. 16(4), 1076–1091 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Qihang Lin for many helpful discussions regarding the affine policy at the beginning of the project and Erick Delage and Amir Ardestani-Jaafari for thoughtful discussions, for relaying the specific parameters of the instance presented in Sect. 5.2, and for pointing out an error in one of our codes. The authors are sincerely grateful to two anonymous referees for their comments and insights that have greatly improved the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guanglin Xu.

Appendix

Appendix

1.1 Proof of Lemma 2

Proof

Any feasible \(y(\xi )\) satisfies

$$\begin{aligned} y(\xi )_s&\ge \max \{\xi _s, 1 - \xi _s\} + y(\xi )_{s-1} \\&\ge \max \{\xi _s, 1 - \xi _s\} + \max \{\xi _{s-1}, 1 - \xi _{s-1}\} + y(\xi )_{s-2} \\&\ge \cdots \ge \sum _{i=1}^s \max \{\xi _i, 1 - \xi _i\} \end{aligned}$$

Hence, applying this inequality at an optimal \(y(\cdot )\), it follows that

$$\begin{aligned} v_{{{\mathrm{RLP}}},2}^* \ge \max \limits _{\xi \in \Xi _2} \sum _{i=1}^s \max \{\xi _i, 1 - \xi _i\}. \end{aligned}$$

Under the change of variables \(\mu := 2 \xi - \mathbbm {1}_s\), we have

$$\begin{aligned} v_{{{\mathrm{RLP}}},2}^*&\ge \max \limits _{\xi \in \Xi _2} \sum _{i=1}^s \max \{\xi _i, 1 - \xi _i\} = \max \limits _{\Vert \mu \Vert \le 1} \sum _{i=1}^s \tfrac{1}{2} \max \{1 + \mu _i, 1 - \mu _i\} \\&= \frac{1}{2} \max \limits _{\Vert \mu \Vert \le 1} \sum _{i=1}^s (1 + |\mu _i|) = \frac{1}{2} \left( s + \max \limits _{\Vert \mu \Vert \le 1} \Vert \mu \Vert _1 \right) = \tfrac{1}{2} (\sqrt{s} + s), \end{aligned}$$

where the last equality follows from the fact that the largest 1-norm over the Euclidean unit ball is \(\sqrt{s}\). Moreover, one can check that the specific, sequentially defined mapping

$$\begin{aligned} y(\xi )_1&:= \max \{\xi _1, 1 - \xi _1\} \\ y(\xi )_2&:= \max \{\xi _2, 1 - \xi _2\} + y(\xi )_1 \\&\vdots \\ y(\xi )_s&:= \max \{\xi _s, 1 - \xi _s\} + y(\xi )_{s-1} \end{aligned}$$

is feasible with objective value \(\tfrac{1}{2}(\sqrt{s} + s)\). So \(v_{{{\mathrm{RLP}}}, 2}^* \le \tfrac{1}{2}(\sqrt{s} + s)\), and this completes the argument that \(v_{{{\mathrm{RLP}}}, 2}^* = \tfrac{1}{2}(\sqrt{s} + s)\). \(\square \)

1.2 Proof of Proposition 6

The proof of Proposition 6 requires the following lemma.

Lemma 3

If a symmetric matrix V is positive semidefinite on the null space of the rectangular matrix E (that is, \(z \in \mathrm {Null}(E) \Rightarrow z^T V z \ge 0\)), then there exists \(\mu > 0\) such that \(\rho I + V + \mu E^TE \succ 0\).

Proof

We prove the contrapositive. Suppose \(\rho I + V + \mu E^TE\) is not positive definite for all \(\mu > 0\). In particular, there exists a sequence of vectors \(\{ z_\ell \}\) such that

$$\begin{aligned} z_\ell ^T(\rho I + V + \ell E^TE) z_\ell \le 0, \ \ \Vert z_\ell \Vert = 1. \end{aligned}$$

Since \(\{ z_\ell \}\) is bounded, there exists a limit point \(\bar{z}\) such that

$$\begin{aligned} z_\ell ^T(\tfrac{1}{\ell } (\rho I + V) + E^TE)z_\ell \le 0 \ \ \Rightarrow \ \ \bar{z}^T E^T E \bar{z} = \Vert E z \Vert ^2 \le 0 \ \ \Leftrightarrow \ \ \bar{z} \in \mathrm {Null}(E). \end{aligned}$$

Furthermore,

$$\begin{aligned} z_\ell ^T(\rho I + V) z_\ell \le -\ell z_\ell ^TE^TEz_\ell = -\ell \Vert E z_\ell \Vert ^2 \le 0&\Rightarrow \ \ \bar{z}^T (\rho I + V) \bar{z} \le 0 \\&\Leftrightarrow \ \ \bar{z}^T V \bar{z} \le -\rho \Vert \bar{z}\Vert ^2 < 0. \end{aligned}$$

Thus, V is not positive semidefinite on \(\mathrm {Null}(E)\). \(\square \)

Proof of Proposition 6

For fixed \(\rho > 0\), let us construct the claimed feasible solution. Set

$$\begin{aligned} \lambda = v^*_{{{\mathrm{RLP}}},2} = \tfrac{1}{2}(\sqrt{s} + s), \quad \alpha = 0, \quad \tau = \tfrac{1}{4} \sqrt{s}, \quad S_{21} = 0, \end{aligned}$$

and

$$\begin{aligned} S_{22} = \frac{1}{2\sqrt{s}} \sum _{i=1}^{s} \left( f_{2i}f_{2i-1}^T + f_{2i-1}f_{2i}^T \right) \ge 0, \end{aligned}$$

where \(f_{j}\) denotes the j-th standard basis vector in \({\mathbb {R}}^m = {\mathbb {R}}^{2s}\). Note that clearly \(\alpha \in \widehat{\mathcal {U}}_2\) and \(\mathrm{Rows}(S_{21}) \in \widehat{\mathcal {U}}_2\). Also forcing \(v = \mu \mathbbm {1}_k\) for a single scalar variable \(\mu \), where \(\mathbbm {1}_k\) is the all-ones vector of size \(k = s+1\), the feasibility constraints of (15) simplify further to

$$\begin{aligned} \rho I + \begin{pmatrix} \tfrac{1}{2} (s + \sqrt{s}) e_1e_1^T - \tfrac{1}{4} \sqrt{s} J &{}\quad -\tfrac{1}{2}F^T \\ -\tfrac{1}{2}F &{}\quad -S_{22} \end{pmatrix} + \mu E^TE \succeq 0, \end{aligned}$$
(19)

where \(e_1 \in {\mathbb {R}}^k = {\mathbb {R}}^{s+1}\) is the first standard basis vector. For compactness, we write

$$\begin{aligned} V := \begin{pmatrix} \tfrac{1}{2} (s + \sqrt{s}) e_1e_1^T - \tfrac{1}{4} \sqrt{s} J &{}\quad -\tfrac{1}{2}F^T \\ -\tfrac{1}{2}F &{}\quad -S_{22} \end{pmatrix} \end{aligned}$$
(20)

so that (19) reads \(\rho I + V + \mu E^TE \succeq 0\).

We next show that the matrix V is positive semidefinite on \(\mathrm {Null}(E)\). Recall that \(E \in {\mathbb {R}}^{n_2 \times (k+m)} = {\mathbb {R}}^{s \times (3s+1)}\). For notational convenience, we partition any \(z \in {\mathbb {R}}^{k+m}\) into \(z = {u \atopwithdelims ()w}\) with \(u \in {\mathbb {R}}^k = {\mathbb {R}}^{s+1}\) and \(w \in {\mathbb {R}}^m = {\mathbb {R}}^{2s}\). Then, from the definition of E, we have

$$\begin{aligned} z = {u \atopwithdelims ()w} \in \mathrm {Null}(E)&\Longleftrightarrow \ \ \left\{ \begin{array}{l} w_1 + w_2 = w_3 + w_4 \\ w_3 + w_4 = w_5 + w_6 \\ \vdots \\ w_{2s - 3} + w_{2s - 2} = w_{2s - 1} + w_{2s} \\ w_{2s - 1} + w_{2s} = u_1 \end{array} \right\} \\&\Longleftrightarrow \ \ w_{2i - 1} = u_1 - w_{2i} \ \ \forall \ i = 1, \ldots , s. \end{aligned}$$

So, taking into account the definition (20) of V,

$$\begin{aligned} 4 \, z^T Vz = 4 \, \textstyle {{u \atopwithdelims ()w}}^T V {u \atopwithdelims ()w} = u^T \left( 2(s + \sqrt{s}) e_1e_1^T - \sqrt{s} J \right) u - 4 \, w^T F u - 4 \, w^T S_{22} w, \end{aligned}$$

which breaks into the three summands, and we will simplify each one by one. First,

$$\begin{aligned} u^T \left( 2(s + \sqrt{s}) e_1e_1^T - \sqrt{s} J \right) u&= 2(s + \sqrt{s}) u_1^2 - \sqrt{s} u_1^2 + \sqrt{s} \sum _{j=2}^{s+1} u_j^2 \\&= 2 \, s \, u_1^2 + \sqrt{s} \, u^T u. \end{aligned}$$

Second,

$$\begin{aligned} -4w^T F u&= -4 \sum _{j = 1}^{2s} w_j [F u]_j = -4 \sum _{i = 1}^{s} \left( w_{2i - 1} [Fu]_{2i - 1} + w_{2i} [Fu]_{2i} \right) \\&= -2 \sum _{i = 1}^{s} \left( w_{2i - 1} (u_1 + u_{i+1}) + w_{2i} (u_1 - u_{i+1}) \right) \\&= -2 \sum _{i = 1}^{s} \left( (w_{2i - 1} + w_{2i}) u_1 + u_{i+1}(w_{2i-1} - w_{2i}) \right) \\&= -2 \sum _{i = 1}^{s} \left( u_1^2 + u_{i+1}(w_{2i-1} - w_{2i}) \right) \\&= -2 \, s \, u_1^2 - 2 \sum _{i = 1}^{s} u_{i+1}(w_{2i-1} - w_{2i}) \\&= -2 \, s \, u_1^2 + 2 \sum _{i = 1}^{s} u_{i+1}(w_{2i} - w_{2i-1})\\&= -2 \, s \, u_1^2 + 2 \sum _{i = 1}^{s} u_{i+1}(2 w_{2i} - u_1). \end{aligned}$$

Finally,

$$\begin{aligned} - 4 w^T S_{22} w&= -4 w^T \left( \frac{1}{2\sqrt{s}} \sum _{i=1}^{s} \left( f_{2i}f_{2i-1}^T + f_{2i-1}f_{2i}^T \right) \right) w \\&= -\frac{4}{\sqrt{s}} \sum _{i=1}^{s} w_{2i - 1} w_{2i} = -\frac{4}{\sqrt{s}} \sum _{i=1}^{s} (u_1 - w_{2i}) w_{2i}. \end{aligned}$$

Combining the three summands, we have as desired

$$\begin{aligned} 4 z^T Vz&= \left( 2s \, u_1^2 + \sqrt{s} \, u^T u \right) + \left( -2s \, u_1^2 + 2 \sum _{i = 1}^{s} u_{i+1}(2w_{2i} - u_1) \right) \\&\quad + \left( -\frac{4}{\sqrt{s}} \sum _{i=1}^{s} (u_1 - w_{2i}) w_{2i} \right) \\&= \sqrt{s} \, u^T u + 2 \sum _{i = 1}^{s} u_{i+1}(2 w_{2i} - u_1) -\frac{4}{\sqrt{s}} \sum _{i=1}^{s} (u_1 - w_{2i}) w_{2i} \\&= \sum _{i = 1}^{s} \left( \frac{1}{\sqrt{s}} \, u_1^2 + \sqrt{s} \, u_{i+1}^2 + 2 \, u_{i+1}(2 w_{2i} - u_1) -\frac{4}{\sqrt{s}} (u_1 - w_{2i}) w_{2i} \right) \\&= \sum _{i = 1}^{s} \left( \frac{1}{\sqrt{s}} \, u_1^2 - 2 \, u_1 \, u_{i+1} -\frac{4}{\sqrt{s}} \, u_1 \, w_{2i} + \sqrt{s} \, u_{i+1}^2 + 4 \, u_{i+1} \, w_{2i} + \frac{4}{\sqrt{s}} \, w_{2i}^2 \right) \\&= \sum _{i=1}^{s} \left( - (s)^{-1/4} \, u_1 + (s)^{1/4} \, u_{i+1} + 2(s)^{-1/4} \, w_{2i} \right) ^2 \\&\ge 0. \end{aligned}$$

Given that \(\rho \), V, and E are defined as above. By Lemma 3, \(\mu \) can be chosen so that (19) is indeed satisfied. \(\square \)

1.3 Proof of Proposition 7

Proof

By construction, Z is positive semidefinite, and one can argue in a straightforward manner that

$$\begin{aligned} Z_{11} = {{\mathrm{Diag}}}(1, \tfrac{1}{s}, \ldots , \tfrac{1}{s}), \quad Z_{22} = \frac{1}{4} \left( I + \mathbbm {1}_m\mathbbm {1}_m^T - \sum _{i=1}^{s}(f_{2i}f_{2i-1}^T + f_{2i-1}f_{2i}^T) \right) , \end{aligned}$$

and

$$\begin{aligned} Z_{21} = \frac{1}{2} \begin{pmatrix} 1 &{}\quad \tfrac{1}{\sqrt{s}} &{}\quad 0 &{}\quad \cdots &{}\quad 0 \\ 1 &{}\quad -\tfrac{1}{\sqrt{s}} &{}\quad 0 &{}\quad \cdots &{} \quad 0 \\ 1 &{} \quad 0 &{} \quad \tfrac{1}{\sqrt{s}} &{}\quad \cdots &{}\quad 0 \\ 1 &{} \quad 0 &{}\quad -\tfrac{1}{\sqrt{s}} &{}\quad \cdots &{} \quad 0 \\ \vdots &{} \quad \vdots &{} \quad \vdots &{}\quad \ddots &{} \quad \vdots \\ 1 &{} \quad 0 &{} \quad 0 &{}\quad \cdots &{} \quad \tfrac{1}{\sqrt{s}} \\ 1 &{} \quad 0 &{} \quad 0 &{}\quad \cdots &{}\quad -\tfrac{1}{\sqrt{s}} \end{pmatrix}. \end{aligned}$$

Then Z clearly satisfies \(g_1g_1^T \bullet Z = 1\), \(Z_{11}e_1 \in \widehat{\mathcal {U}}_2\), \(J \bullet Z_{11} \ge 0\), \(Z_{22} \ge 0\), and \(\mathrm{Rows}(Z_{21}) \in \widehat{\mathcal {U}}_2\). Furthermore, the constraint \(I \bullet Z \le r\) is easily satisfied for sufficiently large r. To check the constraint \({{\mathrm{diag}}}(E Z E^T) = 0\), it suffices to verify \(EZ = 0\), which amounts to two equations. First,

$$\begin{aligned} 0 = E { 2e_1 \atopwithdelims ()\mathbbm {1}_m } = -2 \, d e_1^Te_1 + B^T \mathbbm {1}_m = -2d + 2d = 0, \end{aligned}$$

and second, for each \(i=1, \ldots , s\),

$$\begin{aligned} 0= & {} E { \tfrac{2}{\sqrt{s}}e_{i+1} \atopwithdelims ()f_{2i-1} - f_{2i} } = - \frac{2}{\sqrt{s}} \, de_1^Te_{i+1} \\&\quad +\, B^T(f_{2i-1} - f_{2i}) = 0 + B^Tf_{2i-1} - B^Tf_{2i} = 0. \end{aligned}$$

So the proposed Z is feasible. Finally, it is clear that the corresponding objective value is \(F \bullet Z_{21} = \tfrac{1}{2} (\sqrt{s} + s)\). So Z is indeed optimal. \(\square \)

1.4 Proof of Proposition 8

Proof

The inclusion \(\Xi _1 \subseteq \Xi _2\) implies \(\widehat{\mathcal {U}}_1 \subseteq \widehat{\mathcal {U}}_2\) and \({\mathrm {CPP}}(\widehat{\mathcal {U}}_1 \times {\mathbb {R}}_+^{2s}) \subseteq {\mathrm {CPP}}(\widehat{\mathcal {U}}_2 \times {\mathbb {R}}_+^{2s})\). Hence, \({\mathrm {COP}}(\widehat{\mathcal {U}}_1 \times {\mathbb {R}}_+^{2s}) \supseteq {\mathrm {COP}}(\widehat{\mathcal {U}}_2 \times {\mathbb {R}}_+^{2s})\). Moreover, it is not difficult to see that the construction of \(\mathrm {IB}(\widehat{\mathcal {U}}_1 \times {\mathbb {R}}_+^{2s})\) introduced at the end of Sect. 4 for the polyhedral cone \(\widehat{\mathcal {U}}_1\) satisfies \(\mathrm {IB}(\widehat{\mathcal {U}}_1 \times {\mathbb {R}}_+^{2s}) \supseteq \mathrm {IB}(\widehat{\mathcal {U}}_2 \times {\mathbb {R}}_+^{2s})\). Thus, we conclude \(v_{\mathrm {IB},1}^* \le v_{\mathrm {IB},2}^* = \tfrac{1}{2}(\sqrt{s} + s)\).

We finally show \(v_{\mathrm {IB},1}^* \ge v_{\mathrm {IB},2}^*\). Based on the definition of \(\widehat{\mathcal {U}}_1\) using the matrix P, similar to (16) the corresponding dual problem is

$$\begin{aligned} \begin{array}{lll} v_{\mathrm {IB},1}^* = &{} \max &{} F \bullet Z_{21} \\ &{} \text {s.t.}&{} {{\mathrm{diag}}}(E Z E^T) = 0, \ I \bullet Z \le r \\ &{} &{} PZ_{11}e_1 \ge 0, \ PZ_{11}P^T \ge 0, \ Z_{22} \ge 0, \ P Z_{21}^T \ge 0 \\ &{} &{} Z \succeq 0, \ g_1g_1^T \bullet Z = 1. \end{array} \end{aligned}$$
(21)

To complete the proof, we claim that the specific Z detailed in the previous subsection is also feasible for (21). It remains to show that \(PZ_{11}e_1 \ge 0\), \(PZ_{11}P^T \ge 0\), and \(PZ_{21}^T \ge 0\).

Recall that \(Z_{11} = {{\mathrm{Diag}}}(1, \tfrac{1}{s}, \ldots , \tfrac{1}{s})\) and every row of P has the form \((1, \pm 1, \ldots , \pm 1)\). Clearly, we have \(PZ_{11}e_1 \ge 0\). Moreover, each entry of \(PZ_{11}P^T\) can be expressed as \({1 \atopwithdelims ()\alpha }^T Z_{11} {1 \atopwithdelims ()\beta }\) for some \(\alpha , \beta \in {\mathbb {R}}^s\) each of the form \((\pm 1, \ldots , \pm 1)\). We have

$$\begin{aligned} \textstyle {{1 \atopwithdelims ()\alpha }}^T Z_{11} {1 \atopwithdelims ()\beta } = 1 + \frac{1}{s} \cdot \alpha ^T \beta \ge 1 + \frac{1}{s} (-s) \ge 0. \end{aligned}$$

So indeed \(PZ_{11}P^T \ge 0\). To check \(PZ_{21}^T \ge 0\), recall also that every column of \(Z_{21}^T\) has the form \(\tfrac{1}{2} (e_1 \pm \tfrac{1}{\sqrt{s}} e_{i+1})\) for \(i=1,\ldots ,s\), where \(e_{\bullet }\) is a standard basis vector in \({\mathbb {R}}^k = {\mathbb {R}}^{s+1}\). Then each entry of \(2 P Z_{21}^T\) can be expressed as

$$\begin{aligned} \textstyle {{1 \atopwithdelims ()\alpha }}^T e_1 \pm \tfrac{1}{\sqrt{s}} {1 \atopwithdelims ()\alpha }^T e_{i+1} \ge 1 - \tfrac{1}{\sqrt{s}} > 0. \end{aligned}$$

So \(PZ_{21}^T \ge 0\), as desired. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, G., Burer, S. A copositive approach for two-stage adjustable robust optimization with uncertain right-hand sides. Comput Optim Appl 70, 33–59 (2018). https://doi.org/10.1007/s10589-017-9974-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-017-9974-x

Keywords

Navigation