Skip to main content
Log in

A multistart iterated local search for the multitrip cumulative capacitated vehicle routing problem

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

The multitrip cumulative capacitated vehicle routing problem (mt-CCVRP) is a non-trivial extension of the classical CVRP: the goal is to minimize the sum of arrival times at demand nodes and each vehicle may perform several trips. Applications of this NP-hard problem can be found in disaster logistics and maintenance operations. Contrary to the CVRP, the cost of a solution varies if a trip is reversed or if its rank in a multitrip is changed. Moreover, evaluating local search moves in constant time is not obvious. This article presents a mixed integer linear program (MILP), a dominance rule, and a hybrid metaheuristic: a multi-start iterated local search (MS-ILS) calling a variable neighborhood descent with \(O(1)\) move evaluations. On three sets of instances, MS-ILS obtains good solutions, not only on the mt-CCVRP, but also on the cumulative CVRP where it competes with four existing algorithms. Moreover, the metaheuristic retrieves the optimal solutions of the MILP, which can be computed for small instances using a commercial solver.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. About disasters.: International Federation of Red Cross and Red Crescent Societies (IFRC), http://www.ifrc.org/en/what-we-do/disaster-management/about-disasters/ (2011)

  2. Altay, N., Green III, W.G.: OR/MS research in disaster operations management. Eur. J. Oper. Res. 175(1), 475–493 (2006)

    Article  MATH  Google Scholar 

  3. Applegate, D., Cook, W., Dash, S., Rohe, A.: Solution of a min-max vehicle routing problem. INFORMS J. Comput. 14(2), 132–143 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  4. Archer, A., Williamson, D.P.: Faster approximation algorithms for the minimum latency problem. In: Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA) (2003)

  5. Bakuli, D.L., Smith, J.M.: Resource allocation in state-dependent emergency evacuation networks. Eur. J. Oper. Res. 89(3), 543–555 (1996)

    Article  MATH  Google Scholar 

  6. Balcik, B., Beamon, B.M.: Facility location in humanitarian relief. Int. J. Logist. Res. Appl. 11(2), 101–121 (2008)

    Article  Google Scholar 

  7. Balcik, B., Beamon, B.M., Smilowitz, K.: Last mile distribution in humanitarian relief. J. Intell. Transp. Syst. 12, 51–63 (2008)

    Article  Google Scholar 

  8. Barbarosoǧlu, G., Arda, Y.: A two-stage stochastic programming framework for transportation planning in disaster response. J. Oper. Res. Soc. 55(1), 43–53 (2004)

    Article  Google Scholar 

  9. Barbarosoǧlu, G., Özdamar, L., Çevik, A.: An interactive approach for hierarchical analysis of helicopter logistics in disaster relief operations. Eur. J. Oper. Res. 140(1), 118–133 (2002)

    Article  Google Scholar 

  10. Beamon, B.M.: Humanitarian relief chains: issues and challenges. In: Proceedings of the 34th International Conference on Computers and Industrial Engineering (2004)

  11. Beamon, B.M., Kotleba, S.A.: Inventory management support systems for emergency humanitarian relief operations in South Sudan. Int. J. Logist. Manag. 17(2), 187–212 (2006)

    Article  Google Scholar 

  12. Beamon, B.M., Kotleba, S.A.: Inventory modeling for complex emergencies in humanitarian relief operations. Int. J. Logist. Res. Appl. 9(1), 1–18 (2006)

    Article  Google Scholar 

  13. Bennett, B.T., Gazis, D.C.: School bus routing by computer. Transp. Res. 6(4), 317–325 (1972)

    Article  Google Scholar 

  14. Bianco, L., Mingozzi, A., Ricciardelli, S.: The traveling salesman problem with cumulative costs. Networks 23(2), 81–91 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  15. Blum, A., Chalasani, P., Coppersmith, D., Pulleyblank, B., Raghavan, P., Sudan, M.: The minimum latency problem. In: Proceedings of the Twenty-Sixth Annual ACM Symposium on Theory of Computing. STOC ’94, pp. 163–171. ACM, New York (1994)

  16. Boland, N., Clarke, L., Nemhauser, G.: The asymmetric traveling salesman problem with replenishment arcs. Eur. J. Oper. Res. 123(2), 408–427 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  17. Brandão, J., Mercer, A.: A tabu search algorithm for the multi-trip vehicle routing and scheduling problem. Eur. J. Oper. Res. 100(1), 180–191 (1997)

    Article  MATH  Google Scholar 

  18. Brandão, J., Mercer, A.: The multi-trip vehicle routing problem. J. Oper. Res. Soc. 49(8), 799–805 (1998)

    Article  MATH  Google Scholar 

  19. Bryson, K.M.N., Millar, H., Joseph, A., Mobolurin, A.: Using formal MS/OR modeling to support disaster recovery planning. Eur. J. Oper. Res. 141(3), 679–688 (2002)

    Article  MATH  Google Scholar 

  20. Campbell, A.M., Vandenbussche, D., Hermann, W.: Routing for relief efforts. Transp. Sci. 42(2), 127–145 (2008)

    Article  Google Scholar 

  21. Caunhye, A.M., Nie, X., Pokharel, S.: Optimization models in emergency logistics: a literature review. Socio Econ. Plan. Sci. 46(1), 4–13 (2012). Special Issue: Disaster Planning and Logistics: Part 1

    Article  Google Scholar 

  22. Chaiken, J.M., Larson, R.C.: Methods for allocating urban emergency units: a survey. Manag. Sci. 19(4), 110–130 (1972)

    Article  Google Scholar 

  23. Chang, S.E., Nojima, N.: Measuring post-disaster transportation system performance: the 1995 Kobe earthquake in comparative perspective. Transp. Res. (Part A) 35(6), 475–494 (2001)

    Google Scholar 

  24. Christofides, N., Mingozzi, A., Toth, P.: The Vehicle Routing Problem. Wiley, Chichester (1979)

    Google Scholar 

  25. Davidson, R.A., Zhao, H., Kumar, V.: Quantitative model to forecast changes in hurricane vulnerability of regional building inventory. J. Infrastruct. Syst. 9(2), 55–64 (2003)

    Article  Google Scholar 

  26. De Angelis, V., Mecoli, M., Nikoi, C., Storchi, G.: Multiperiod integrated routing and scheduling of World Food Programme cargo planes in Angola. Comput. Oper. Res. 34(6), 1601–1615 (2007)

    Article  MATH  Google Scholar 

  27. Dell, R.F., Batta, R., Karwan, M.H.: The multiple vehicle TSP with time windows and equity constraints over a multiple day horizon. Transp. Sci. 30(2), 120–133 (1996)

    Article  MATH  Google Scholar 

  28. Farahani, R.Z., Asgari, N., Heidari, N., Hosseininia, M., Goh, M.: Covering problems in facility location: a review. Comput. Ind. Eng. 62(1), 368–407 (2012)

    Article  Google Scholar 

  29. Fischer III, H.: A Proposed Disaster Scale. Technical. Report, Millersville University of Pennsylvania (2003)

  30. Fischetti, M., Laporte, G., Martello, S.: The delivery man problem and cumulative matroids. Oper. Res. 41(6), 1055–1064 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  31. Fleischmann, B.: The vehicle routing problem with multiple use of vehicles. Working paper, Fachbereich Wirtschaftswissenschafte Universitat Hamburg (1990)

  32. Galindo, G., Batta, R.: Review of recent developments in OR/MS research in disaster operations management. Eur. J. Oper. Res. 230(2), 201–211 (2013)

    Article  Google Scholar 

  33. Golden, B., Wasil, E., Kelly, J., Chao, I.: The impact of metaheuristics on solving the vehicle routing problem: algorithms, problem sets and computational results. In: Crainic, T., Laporte, G. (eds.) Fleet Management and Logistics, pp. 33–56. Kluwer, Dordrecht (1998)

    Chapter  Google Scholar 

  34. Gouveia, L., Voss, S.: A classification of formulations for the (time-dependent) traveling salesman problem. Eur. J. Oper. Res. 83(1), 69–82 (1995)

    Article  MATH  Google Scholar 

  35. Green III, W.G., McGinnis, S.R.: Thoughts on the higher order taxonomy of disasters. Notes Sci. Extreme Situat. 7, 1–6 (2002)

    Google Scholar 

  36. Gribkovskaia, I., Gullberg, B.O., Hovden, K.J., Wallace, S.W.: Optimization model for a livestock collection problem. Int. J. Phys. Distrib. Logist. Manag. 36(2), 136–152 (2006)

    Article  Google Scholar 

  37. Haghani, A., Oh, S.C.: Formulation and solution of a multi-commodity, multi-modal network flow model for disaster relief operations. Transp. Res. (Part A) 30(3), 231–250 (1996)

    Google Scholar 

  38. Hemel, T., van Erk, S., Jenniskens, P.: The Manhattan Project (1996). http://www.win.tue.nl/whizzkids/1996/tsp.html

  39. Hoetmer, G.: Introduction. In: Hoetmer, G.J., Drabek, T.E. (eds.) Emergency Management: Principles and Practice for Local Government, pp. xvii–xxiv. International City Management Association (1991)

  40. IFRC: World Disasters Report 2013. Focus on technology and the future of humanitarian action. IFRC (International Federation of Red Cross and Red Crescent Societies) (2013)

  41. Jothi, R., Raghavachari, B.: Approximating the k-traveling repairman problem with repairtimes. J. Discret. Algorithms 5(2), 293–303 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  42. Kara, I., Kara, B.Y., Yetis, M.K.: Cumulative vehicle routing problems. In: Caric, T., Gold, H. (eds.) Vehicle Routing Problem, pp. 85–98. Intech, (2008)

  43. Ke, L., Feng, Z.: A two-phase metaheuristic for the cumulative capacitated vehicle routing problem. Comput. Oper. Res. 40, 633–638 (2013)

    Article  Google Scholar 

  44. Kim, S.K., Dshalalow, J.: Stochastic disaster recovery systems with external resources. Math. Comput. Model. 36(1113), 1235–1257 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  45. Lambert, J.H., Patterson, C.E.: Prioritization of schedule dependencies in hurricane recovery of transportation agency. J. Infrastruct. Syst. 8(3), 103–111 (2002)

    Article  Google Scholar 

  46. Li, L.Y.O., Fu, Z.: The school bus routing problem: a case study. J. Oper. Res. Soc. 53(5), 552–558 (2002)

    Article  MATH  Google Scholar 

  47. Lourenço, H., Martin, O., Stützle, T.: Iterated local search: framework and applications. In: Gendreau, M., Potvin, J. (eds.) Handbook of Metaheuristics, pp. 363–397. Springer, Berlin (2010)

    Chapter  Google Scholar 

  48. Lucena, A.: Time-dependent traveling salesman problem: the deliveryman case. Networks 20, 753–763 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  49. Mak, V., Boland, N.: Heuristic approaches to the asymmetric travelling salesman problem with replenishment arcs. Int. Trans. Oper. Res. 7(45), 431–447 (2000)

    Article  MathSciNet  Google Scholar 

  50. Maya, P., Sörensen, K.: A GRASP metaheuristic to improve accessibility after a disaster. OR Spectr. 33, 525–542 (2011)

    Article  MATH  Google Scholar 

  51. Mete, H.O., Zabinsky, Z.B.: Stochastic optimization of medical supply location and distribution in disaster management. Int. J. Prod. Econ. 126(1), 76–84 (2010)

    Article  Google Scholar 

  52. Miller, C.E., Tucker, A.W., Zemlin, R.A.: Integer programming formulation of traveling salesman problems. J. ACM 7(4), 326–329 (1960)

    Article  MATH  MathSciNet  Google Scholar 

  53. Mladenović, N., Hansen, P.: Variable neighborhood search. Comput. Oper. Res. 24(11), 1097–1100 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  54. Ngueveu, S.U., Prins, C., Calvo, R.W.: An effective memetic algorithm for the cumulative capacitated vehicle routing problem. Comput. Oper. Res. 37(11), 1877–1885 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  55. Nikolopoulos, C.V., Tzanetis, D.E.: A model for housing allocation of a homeless population due to a natural disaster. Nonlinear Anal. Real World Appl. 4(4), 561–579 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  56. Olivera, A., Viera, O.: Adaptive memory programming for the vehicle routing problem with multiple trips. Comput. Oper. Res. 34(1), 28–47 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  57. Özdamar, L.: Planning helicopter logistics in disaster relief. OR Spectr. 33, 655–672 (2011)

    Article  Google Scholar 

  58. Özdamar, L., Ekinci, E., Küçükyazici, B.: Emergency logistics planning in natural disasters. Ann. Oper. Res. 129, 217–245 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  59. Petch, R.J., Salhi, S.: A multi-phase constructive heuristic for the vehicle routing problem with multiple trips. Discret. Appl. Math. 133, 69–92 (2004)

    Article  MathSciNet  Google Scholar 

  60. Pettit, S., Beresford, A.: Emergency relief logistics: an evaluation of military, non-military and composite response models. Int. J. Logist. 8(4), 313–331 (2005)

    Article  Google Scholar 

  61. Picard, J.C., Queyranne, M.: The time-dependent traveling salesman problem and its application to the tardiness problem in one-machine scheduling. Oper. Res. 26(1), 86–110 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  62. Prins, C.: Efficient heuristic for the heterogeneous fleet multitrip VRP with application to a large-scale real case. J. Math. Model. Algorithms 1, 135–150 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  63. Prins, C.: A GRASP\(\times \) evolutionary local search hybrid for the vehicle routing problem. In: Pereira, F.B., Tavares, J. (eds.) Bio-Inspired Algorithms for the Vehicle Routing Problem. Springer, Berlin (2009)

    Google Scholar 

  64. Repoussis, P.P., Tarantilis, C.D., Bräysy, O., Ioannou, G.: A hybrid evolution strategy for the open vehicle routing problem. Comput. Oper. Res. 37(3), 443–455 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  65. Ribeiro, G.M., Laporte, G.: An adaptive large neighborhood search heuristic for the cumulative capacitated vehicle routing problem. Comput. Oper. Res. 39(3), 728–735 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  66. Salari, M., Toth, P., Tramontani, A.: An ILP improvement procedure for the open vehicle routing problem. Comput. Oper. Res. 37(12), 2106–2120 (2010)

    Article  MATH  Google Scholar 

  67. Salehipour, A., Sörensen, K., Goos, P., Bräysy, O.: An efficient GRASP + VND metaheuristic for the traveling repairman problem. Working paper, University of Antwerp, Faculty of Applied Economics (2008)

  68. Salhi, S., Petch, R.: A GA-based heuristic for the vehicle routing problem with multiple trips. J. Math. Model. Algorithms 6, 591–613 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  69. Shim, K.C., Fontane, D.G., Labadie, J.W.: Spatial decision support system for integrated river basin flood control. J. Water Resour. Plann. Manag. 128(3), 190–201 (2002)

    Article  Google Scholar 

  70. Silva, M.M., Subramanian, A., Vidal, T., Ochi, L.S.: A simple and effective metaheuristic for the minimum latency problem. Eur. J. Oper. Res. 221(3), 513–520 (2012)

    Article  MATH  Google Scholar 

  71. Swersey, A.J.: The deployment of police, fire, and emergency medical units. In: Pollock, M.R.S.M., Barnett, A. (eds.) Operations Research and the Public Sector, Handbooks in Operations Research and Management Science, vol. 6, pp. 151–200. Elsevier, Amsterdam (1994)

    Google Scholar 

  72. Taillard, E.D., Laporte, G., Gendreau, M.: Vehicle routeing with multiple use of vehicles. J. Oper. Res. Soc. 47(8), 1065–1070 (1996)

    Article  MATH  Google Scholar 

  73. Tsitsiklis, J.N.: Special cases of traveling salesman and repairman problems with time windows. Networks 22, 263–282 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  74. Viswanath, K., Peeta, S.: Multicommodity maximal covering network design problem for planning critical routes for earthquake response. Transp. Res. Record 1857, 1–10 (2003)

    Article  Google Scholar 

  75. Wei, Y.M., Xu, W.X., Fan, Y., Tasi, H.T.: Artificial neural network based predictive method for flood disaster. Comput. Ind. Eng. 42, 383–390 (2002)

    Article  Google Scholar 

  76. Yi, W., Özdamar, L.: A dynamic logistics coordination model for evacuation and support in disaster response activities. Eur. J. Oper. Res. 179(3), 1177–1193 (2007)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Prins.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rivera, J.C., Afsar, H.M. & Prins, C. A multistart iterated local search for the multitrip cumulative capacitated vehicle routing problem. Comput Optim Appl 61, 159–187 (2015). https://doi.org/10.1007/s10589-014-9713-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-014-9713-5

Keywords

Navigation