Skip to main content
Log in

Approximation methods for complex polynomial optimization

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

Complex polynomial optimization problems arise from real-life applications including radar code design, MIMO beamforming, and quantum mechanics. In this paper, we study complex polynomial optimization models where the objective function takes one of the following three forms: (1) multilinear; (2) homogeneous polynomial; (3) symmetric conjugate form. On the constraint side, the decision variables belong to one of the following three sets: (1) the \(m\)-th roots of complex unity; (2) the complex unity; (3) the Euclidean sphere. We first discuss the multilinear objective function. Polynomial-time approximation algorithms are proposed for such problems with assured worst-case performance ratios, which depend only on the dimensions of the model. Then we introduce complex homogenous polynomial functions and establish key linkages between complex multilinear forms and the complex polynomial functions. Approximation algorithms for the above-mentioned complex polynomial optimization models with worst-case performance ratios are presented. Numerical results are reported to illustrate the effectiveness of the proposed approximation algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aittomaki T., Koivunen V.: Beampattern optimization by minimization of quartic polynomial, Proceedings of 2009 IEEE/SP 15th Workshop on Statistical, Signal Processing, 437–440, 2009.

  2. Alon, N., Naor, A.: Approximating the cut-norm via Grothendieck’s inequality. SIAM J. Comput. 35, 787–803 (2006)

    Google Scholar 

  3. Anjos, M.F., Lasserre, J.B.: Handbook on Semidefinite, Conic and Polynomial Optimization. Springer, New York (2011)

  4. Aubry, A., De Maio, A., Jiang, B., Zhang, S.: Ambiguity function shaping for cognitive radar via complex quartic optimization. IEEE Transac. Signal Process. 61, 5603–5619 (2013)

    Article  Google Scholar 

  5. Ben-Tal, A., Nemirovski, A., Roos, C.: Extended matrix cube theorems with applications to \(\mu \)-theory in control. Math. Oper. Res. 28, 497–523 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  6. Chen, B., He, S., Li, Z., Zhang, S.: Maximum block improvement and polynomial optimization. SIAM J. Optim. 22, 87–107 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  7. Chen, C., Vaidyanathan, P.P.: MIMO radar waveform optimization with prior information of the extended target and clutter. IEEE Trans. Signal Process. 57, 3533–3544 (2009)

    Article  MathSciNet  Google Scholar 

  8. Doherty, A.C., Wehner, S.: Convergence of SDP hierarchies for polynomial optimization on the hypersphere, Technical Report, arXiv:1210.5048, 2012.

  9. He, S., Jiang, B., Li, Z., Zhang, S.: Probability bounds for polynomial functions in random variables. Math. Oper. Res. (2014). doi:10.1287/moor.2013.0637

  10. He, S., Li, Z., Zhang, S.: Approximation algorithms for homogeneous polynomial optimization with quadratic constraints. Math. Program. Series B 125, 353–383 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  11. He, S., Li, Z., Zhang, S.: Inhomogeneous polynomial optimization over convex set: an approximation approach. Math. Comp. (accepted)

  12. He, S., Li, Z., Zhang, S.: Approximation algorithms for discrete polynomial optimization. J. Oper. Res. Soc. China 1, 3–36 (2013)

    Google Scholar 

  13. Hilling, J.J., Sudbery, A.: The geometric measure of multipartite entanglement and the singular values of a hypermatrix. J. Math. Phys. 51, 072102 (2010)

    Article  MathSciNet  Google Scholar 

  14. Hou, K., So, A. M.-C.: Hardness and approximation results for \(L_p\)-ball constrained homogeneous polynomial optimization problems. Math. Oper. Res. (accepted)

  15. Huang, Y., Zhang, S.: Approximation algorithms for indefinite complex quadratic maximization problems. Sci. Chin. Math. 53, 2697–2708 (2010)

    Article  MATH  Google Scholar 

  16. Jiang, B.: Polynomial optimization: structures, algorithms, and engineering applications, Ph.D. Thesis, University of Minnesota, Minneapolis, MN, 2013.

  17. Jiang, B., Li, Z., Zhang, S.: Real-valued conjugate complex polynomials and eigenvalues of complex tensors, Working Paper, 2013.

  18. Jiang, B., Ma, S., Zhang, S.: Tensor principal component analysis via convex optimization. Technical Report, Department of Industrial and Systems Engineering, University of Minnesota, Minneapolis, MN, 2012.

  19. Lasserre, J.B.: Global optimization with polynomials and the problem of moments. SIAM J. Optim. 11, 796–817 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  20. Li, Z., He, S., Zhang, S.: Approximation Methods for Polynomial Optimization: Models, Algorithms, and Applications. SpringerBriefs in Optimization. Springer, New York (2012)

    Book  Google Scholar 

  21. Ling, C., Nie, J., Qi, L., Ye, Y.: Biquadratic optimization over unit spheres and semidefinite programming relaxations. SIAM J. Optim. 20, 1286–1310 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  22. Luo, Z.-Q., Zhang, S.: A semidefinite relaxation scheme for multivariate quartic polynomial optimization with quadratic constraints. SIAM J. Optim. 20, 1716–1736 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  23. Maricic, B., Luo, Z.-Q., Davidson, T.N.: Blind constant modulus equalization via convex optimization. IEEE Transac. Signal Process. 51, 805–818 (2003)

    Article  MathSciNet  Google Scholar 

  24. Parrilo, P.A.: Structured semidefinite programs and semialgebraic geometry methods in robustness and optimization, Ph.D. Dissertation, California Institute of Technology, Pasadena, CA, 2000.

  25. Qi, L.: Eigenvalues and invariants of tensors. J. Math. Anal. Appl. 325, 1363–1377 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  26. So, A.M.-C.: Deterministic approximation algorithms for sphere constrained homogeneous polynomial optimization problems. Math. Program. Series B 129, 357–382 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  27. So, A.M.-C., Zhang, J., Ye, Y.: On approximating complex quadratic optimization problems via semidefinite programming relaxations. Math. Program. Series B 110, 93–110 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  28. Toker, O., Ozbay, H.: On the complexity of purely complex \(\mu \) computation and related problems in multidimensional systems. IEEE Transac. Autom. Control 43, 409–414 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  29. Zhang, S., Huang, Y.: Complex quadratic optimization and semidefinite programming. SIAM J. Optim. 16, 871–890 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  30. Zhang, X., Qi, L.: The quantum eigenvalue problem and Z-eigenvalues of tensors, Technical Report, arXiv:1205.1342, 2012.

Download references

Acknowledgments

This research was partially supported by National Science Foundation of USA [Grant CMMI-1161242], Natural Science Foundation of China [Grant 11371242], Natural Science Foundation of Shanghai [Grant 12ZR1410100], and Ph.D. Programs Foundation of Chinese Ministry of Education [Grant 20123108120002].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhening Li.

Additional information

This paper is dedicated to Masao Fukushima in celebration of his 65th birthday.

Appendix: Proofs of the lemmas

Appendix: Proofs of the lemmas

Lemma 3.2 Define \(F_m:\mathbb {C}\mapsto \mathbb {C}\) with \(F_m(x):=\frac{m(2 - \omega _m - \omega _m^{-1})}{8\pi ^2} \sum _{\ell =0}^{m-1} \omega _m^\ell \left( \arccos \left( -\hbox {Re}\,\omega _m^{-\ell } x\right) \right) ^2\).

  1. (1)

    If \(a \in \mathbb {C}\) and \(b \in \mathbf{\Omega }_m\), then \(F_m (ab)=bF_m(a)\).

  2. (2)

    If \(a \in \mathbb {R}\), then \(F_m(a)\in \mathbb {R}\).

Proof

  1. (1)

    If \(b \in \mathbf{\Omega }_m\), let \(b = \omega _m^k\) for some \(k\in \mathbb {Z}\). It holds that

    $$\begin{aligned} F_m(ab)=F_m(\omega _m^k a)&= \frac{m(2 - \omega _m - \omega _m^{-1})}{8\pi ^2} \sum _{\ell =0}^{m-1} \omega _m^\ell \left( \arccos \left( -\hbox {Re}\,\omega _m^{-\ell }\omega _m^k a \right) \right) ^2\\&= \omega _m^k\frac{m(2\!-\!\omega _m \!-\!\omega _m^{-1})}{8\pi ^2} \sum _{\ell =0}^{m-1} \omega _m^{\ell -k} \left( \arccos \left( \!-\!\hbox {Re}\,\omega _m^{-(\ell -k)} a \right) \right) ^2\\&= b \frac{m(2-\omega _m -\omega _m^{-1})}{8\pi ^2} \sum _{j=-k}^{m-1-k} \omega _m^{j} \left( \arccos \left( -\hbox {Re}\,\omega _m^{-j} a \right) \right) ^2\\&= b F_m(a). \end{aligned}$$
  2. (2)

    If \(a \in \mathbb {R}\), then \(\hbox {Re}\,\omega _m^{-k}a=a \hbox {Re}\,\omega _m^{-k}=a \hbox {Re}\,\omega _m^{k}= \hbox {Re}\,\omega _m^{k}a\) for any \(k\in \mathbb {Z}\). Therefore,

    $$\begin{aligned} \overline{F_m(a)}&= \frac{m(2 - \omega _m^{-1} - \omega _m)}{8\pi ^2} \sum _{\ell =0}^{m-1} \omega _m^{-\ell } \left( \arccos \left( -\hbox {Re}\,\omega _m^{-\ell }a \right) \right) ^2 \\&= \frac{m(2 - \omega _m- \omega _m^{-1})}{8\pi ^2} \sum _{\ell =0}^{m-1} \omega _m^{-\ell } \left( \arccos \left( -\hbox {Re}\,\omega _m^{\ell }a \right) \right) ^2 \\&= \frac{m(2 - \omega _m- \omega _m^{-1})}{8\pi ^2} \sum _{j=1-m}^{0} \omega _m^{j} \left( \arccos \left( -\hbox {Re}\,\omega _m^{-j}a \right) \right) ^2\\&= F_m(a), \end{aligned}$$

implying that \(F_m(a)\in \mathbb {R}\). \(\square \)

Lemma 4.1 Let \(m\in \{3,4,\dots ,\infty \}\). Suppose \(x^1,x^2,\dots ,x^d \in \mathbb {C}^{n}\), and \(\mathcal {F}\in \mathbb {C}^{n^d}\) is a super-symmetric complex tensor with its associated multilinear form \(L\) and homogeneous polynomial \(H\). If \(\xi _1,\xi _2,\dots ,\xi _d\) are i.i.d. uniform distribution on \(\mathbf{\Omega }_m\), then

$$\begin{aligned} \mathbf{\mathsf E}\left[ \prod _{i=1}^d \overline{\xi _i} H\left( \sum _{k=1}^d \xi _k x^k\right) \right] = d!L(x^1,x^2\dots , x^d) \text{ and } \mathbf{\mathsf E}\left[ \prod _{i=1}^d \xi _i H\left( \sum _{k=1}^d \xi _k x^k\right) \right] = 0. \end{aligned}$$

Proof

First we observe that

$$\begin{aligned} \mathbf{\mathsf E}\left[ \prod _{i=1}^d \overline{\xi _i} H\left( \sum _{k=1}^d\xi _kx^k\right) \right]&= \mathbf{\mathsf E}\left[ \prod _{i=1}^d \overline{\xi _i} \sum _{1\le k_1,k_2,\dots ,k_d\le d} L\left( \xi _{k_1}x^{k_1},\xi _{k_2}x^{k_2}, \dots , \xi _{k_d}x^{k_d}\right) \right] \\&= \sum _{1\le k_1,k_2,\dots ,k_d\le d} \mathbf{\mathsf E}\left[ \left( \prod _{i=1}^d \overline{\xi _i}\right) \!\left( \prod _{j=1}^d \xi _{k_j}\right) L\left( x^{k_1},x^{k_2},\dots , x^{k_d} \right) \right] . \end{aligned}$$

If \((k_1,k_2,\dots ,k_d)\in \Pi (1,2,\dots ,d)\), i.e., a permutation of \(\{1,2,\dots ,d\}\), then

$$\begin{aligned} \mathbf{\mathsf E}\left[ \left( \prod _{i=1}^d \overline{\xi _i}\right) \!\left( \prod _{j=1}^d \xi _{k_j}\right) \right] = \mathbf{\mathsf E}\left[ \prod _{i=1}^d \overline{\xi _i}\xi _i\right] =1; \end{aligned}$$

otherwise, there is \(k_0 (1\le k_0 \le d)\) such that and \(k_0\ne k_j\) for all \(j=1,2,\dots ,d\). In the latter case,

$$\begin{aligned} \mathbf{\mathsf E}\left[ \left( \prod _{i=1}^d \overline{\xi _i}\right) \!\left( \prod _{j=1}^d \xi _{k_j}\right) \right] = \mathbf{\mathsf E}\left[ \overline{\xi _{k_0}}\right] \mathbf{\mathsf E}\left[ \left( \prod _{1\le i\le d, i\ne k_0} \overline{\xi _i}\right) \!\left( \prod _{j=1}^d \xi _{k_j}\right) \right] =0. \end{aligned}$$

Since the number of different permutations of \(\{1,2,\dots ,d\}\) is \(d!\), by taking into account the super-symmetric property of \(L\), the first identity follows.

For the second identity, similarly we have

$$\begin{aligned} \mathbf{\mathsf E}\left[ \prod _{i=1}^d \xi _i H\left( \sum _{k=1}^d\xi _kx^k\right) \right] = \sum _{1\le k_1,k_2,\dots ,k_d\le d} \mathbf{\mathsf E}\left[ \left( \prod _{i=1}^d \xi _i\right) \!\left( \prod _{j=1}^d \xi _{k_j}\right) L\left( x^{k_1},x^{k_2},\dots , x^{k_d} \right) \right] . \end{aligned}$$

There exists \(k_0 (1 \!\le \! k_0 \!\le \! d)\) such that \(\xi _{k_0}\) appears once or twice in \(\big (\prod _{i=1}^d \xi _i\big )\!\big (\prod _{j=1}^d \xi _{k_j}\big )\). For \(m\in \{3,4,\dots ,\infty \}\), we notice that \(\mathbf{\mathsf E}[\xi _i]=0\) and \(\mathbf{\mathsf E}[\xi _i^2]=0\) for \(i=1,2,\dots ,d\). By independence of \(\xi _i\)’s, \(\mathbf{\mathsf E}\left[ \big (\prod _{i=1}^d \xi _i\big ) \! \big (\prod _{j=1}^d \xi _{k_j}\big )\right] \) is always zero, leading to the second identity. \(\square \)

Lemma 5.1 Let \(m\in \{3,4,\dots ,\infty \}\). Suppose \(x^1,x^2,\dots ,x^{2d} \in \mathbb {C}^{n}\), and \(\mathcal {F}\in \mathbb {C}^{n^{2d}}\) is a conjugate partial-symmetric tensor with its associated multilinear form \(L\) and symmetric conjugate form \(C\). If \(\xi _1,\xi _2,\dots ,\xi _{2d}\) are i.i.d. uniform distribution on \(\mathbf{\Omega }_m\), then

$$\begin{aligned}&\mathbf{\mathsf E}\left[ \left( \prod _{i=1}^d \xi _i\right) \! \left( \prod _{i=d+1}^{2d} \overline{\xi _i}\right) C\left( \sum _{k=1}^d \overline{\xi _k} x^k + \!\sum _{k=d+1}^{2d} \overline{\xi _k x^k},\sum _{k=1}^d \xi _k\overline{x^k} + \! \sum _{k=d+1}^{2d} \xi _k x^k\right) \right] \\&= (d!)^2 L(x^1, x^2,\dots , x^{2d}). \end{aligned}$$

Proof

We first consider the following

$$\begin{aligned}&\mathbf{\mathsf E}\left[ \left( \prod _{i=1}^d \xi _i\right) \! \left( \prod _{i=d + 1}^{2d} \overline{\xi _i}\right) C\left( \sum _{k=1}^{2d} \overline{\xi _k x^k},\sum _{k=1}^{2d} \xi _k x^k\right) \right] \\&= \mathbf{\mathsf E}\left[ \left( \prod _{i=1}^d \xi _i\right) \! \left( \prod _{i=d + 1}^{2d}\overline{\xi _i}\right) \sum _{1\le k_1,\dots ,k_{2d}\le 2d} L\left( \overline{\xi _{k_1}x^{k_1}},\dots ,\overline{\xi _{k_d}x^{k_d}},\xi _{k_{d+1}}x^{k_{d+1}},\dots , \xi _{k_{2d}}x^{k_{2d}}\right) \right] \\&=\sum _{1\le k_1,\dots ,k_{2d}\le 2d}\mathbf{\mathsf E}\left[ \left( \prod _{i=1}^d \xi _i\right) \! \left( \prod _{i=d + 1}^{2d}\overline{\xi _i}\right) \! \left( \prod _{j=1}^d \overline{\xi _{k_j}}\right) \! \left( \prod _{j=d + 1}^{2d}\xi _{k_j}\right) \right] \\&\quad \cdot L\left( \overline{x^{k_1}},\dots ,\overline{x^{k_d}}, x^{k_{d+1}},\dots ,x^{k_{2d}}\right) . \end{aligned}$$

For \(m\in \{3,4,\dots ,\infty \}\), we observe that \(\mathbf{\mathsf E}[\xi _i]=0\) and \(\mathbf{\mathsf E}[\xi _i^2]=0\) for \(i=1,2,\dots ,2d\). Using a similar argument in the proof of Lemma 4.1, we have

$$\begin{aligned}&\mathbf{\mathsf E}\left[ \left( \prod _{i=1}^d \xi _i\right) \! \left( \prod _{i=d + 1}^{2d}\overline{\xi _i}\right) \! \left( \prod _{j=1}^d \overline{\xi _{k_j}}\right) \! \left( \prod _{j=d + 1}^{2d}\xi _{k_j}\right) \right] \\&\quad =\left\{ \begin{array}{l@{\quad }l}1 &{} (k_1,\dots ,k_d)\in \Pi (1,\dots ,d) \text{ and } (k_{d+1},\dots ,k_{2d})\in \Pi (d+1,\dots ,2d); \\ 0 &{}\text{ otherwise }. \end{array}\right. \end{aligned}$$

By noticing that \(\mathcal {F}\) is conjugate partial-symmetric (see Definition 2.2), and considering numbers of permutations, it follows that

$$\begin{aligned} \mathbf{\mathsf E}\left[ \left( \prod _{i=1}^d \xi _i\right) \! \left( \prod _{i=d + 1}^{2d} \overline{\xi _i}\right) C\left( \sum _{k=1}^{2d} \overline{\xi _k x^k},\sum _{k=1}^{2d} \xi _k x^k\right) \right] \!=\! (d!)^2 L\left( \overline{x^1}, \dots , \overline{x^d},x^{d+1},\dots ,x^{2d}\right) . \end{aligned}$$

Finally, replacing \(\overline{x^k}\) by \(x^k\) for \(k=1,2,\dots ,d\) in the above identity leads to the desired result. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, B., Li, Z. & Zhang, S. Approximation methods for complex polynomial optimization. Comput Optim Appl 59, 219–248 (2014). https://doi.org/10.1007/s10589-014-9640-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-014-9640-5

Keywords

Mathematics Subject Classification

Navigation