Skip to main content
Log in

A new method for solving Pareto eigenvalue complementarity problems

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

In this paper, we introduce a new method, called the Lattice Projection Method (LPM), for solving eigenvalue complementarity problems. The original problem is reformulated to find the roots of a nonsmooth function. A semismooth Newton type method is then applied to approximate the eigenvalues and eigenvectors of the complementarity problems. The LPM is compared to SNMmin and SNMFB, two methods widely discussed in the literature for solving nonlinear complementarity problems, by using the performance profiles as a comparing tool (Dolan, Moré in Math. Program. 91:201–213, 2002). The performance measures, used to analyze the three solvers on a set of matrices mostly taken from the Matrix Market (Boisvert et al. in The quality of numerical software: assessment and enhancement, pp. 125–137, 1997), are computing time, number of iterations, number of failures and maximum number of solutions found by each solver. The numerical experiments highlight the efficiency of the LPM and show that it is a promising method for solving eigenvalue complementarity problems. Finally, Pareto bi-eigenvalue complementarity problems were solved numerically as an application to confirm the efficiency of our method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. As stopping criteria, we use ∥Φ(z k)∥<10−8.

References

  1. Adly, S., Seeger, A.: A nonsmooth algorithm for cone-constrained eigenvalue problems. Comput. Optim. Appl. 49, 299–318 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Amri, A., Seeger, A.: Spectral analysis of coupled linear complementarity problems. Linear Algebra Appl. 432, 2507–2523 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Boisvert, R.F., Pozo, R., Remington, K., Barrett, R.F., Dongarra, J.J.: Matrix market: a web resource for test matrix collections. In: The Quality of Numerical Software: Assessment and Enhancement, pp. 125–137. Chapman and Hall, London (1997)

    Google Scholar 

  4. Chu, M.T., Watterson, J.L.: On a multivariate eigenvalue problem: I. Algebric theory and a power method. SIAM J. Sci. Comput. 14, 1089–1106 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  5. Clarke, F.H.: Optimization and Nonsmooth Analysis. Wiley, New York (1983). Reprinted by, SIAM, Philadelphia, PA, 1990

    MATH  Google Scholar 

  6. Cops: http://mcs.anl.gov/~more/cops/

  7. De Luca, T., Facchinei, F., Kanzow, C.: A semismooth equation approach to the solution of nonlinear complementarity problems. Math. Program. 75, 407–439 (1996)

    Article  MATH  Google Scholar 

  8. Dirkse, S.P., Ferris, M.C.: A pathsearch damped Newton method for computing general equilibria. Ann. Oper. Res. 68, 211–232 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dirkse, S.P., Ferris, M.C.: The path solver: a non-monotone stabilization scheme for mixed complementarity problems. Optim. Methods Softw. 5, 123–156 (1995)

    Article  Google Scholar 

  10. Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles. Math. Program. 91, 201–213 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ferris, M.C., Pang, J.S.: Engineering and economic applications of complementarity problems. J. Soc. Ind. Appl. Math. 39, 669–713 (1997)

    MathSciNet  MATH  Google Scholar 

  12. Fischer, A.: A special Newton-type optimization method. Optimization 24, 269–284 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hanafi, M., Ten Berge, J.M.F.: Global optimality of the successive Maxbet algorithm. Psychometrika 68, 97–103 (2003)

    Article  MathSciNet  Google Scholar 

  14. Harker, P.T., Pang, J.S.: Finite-dimensional variational inequality and nonlinear complementarity problem: a survey of theory, algorithms and applications. Math. Program. 48, 161–220 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  15. Horst, P.: Relations among m sets of measures. Psychometrika 26, 129–149 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hotelling, H.: The most predictable criterion. J. Educ. Psychol. 26, 139–142 (1935)

    Article  Google Scholar 

  17. Hotelling, H.: Relations between two sets of variates. Biometrika 28, 321–377 (1936)

    MATH  Google Scholar 

  18. Judice, J.J., Sherali, H.D., Ribeiro, I.M.: The eigenvalue complementarity problem. Comput. Appl. 37(2), 139–156 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  19. Júdice, J.J., Raydan, M., Rosa, S.S., Santos, S.A.: On the solution of the symmetric eigenvalue complementarity problem by the spectral projected gradient algorithm. Numer. Algorithms 47, 391–407 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Júdice, J.J., Sherali, H.D., Ribeiro, I.M., Rosa, S.S.: On the asymmetric eigenvalue complementarity problem. Optim. Methods Softw. 24(4–5), 549–568 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kanzow, C., Kleinmichel, H.: A new class of semismooth Newton type methods for nonlinear complementarity problems. Comput. Optim. Appl. 11, 227–251 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kanzow, C., Yamashita, N., Fukushima, M.: New NCP-functions and their properties. J. Optim. Theory Appl. 94, 115–135 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kettenring, J.R.: Canonical analysis of several sets of variables. Biometrika 58, 433–451 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  24. Martins, J.A.C., Barbarin, S., Raous, M., Pinto da Costa, A.: Dynamic stability of finite dimensional linearly elastic systems with unilateral contact and Coulomb friction. Comput. Methods Appl. Mech. Eng. 177, 289–328 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  25. Martins, J.A.C., Pinto da Costa, A.: Stability of finite-dimensional nonlinear elastic systems with unilateral contact and friction. Int. J. Solids Struct. 37, 2519–2564 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  26. Martins, J.A.C., Pinto da Costa, A.: Bifurcations and instabilities in frictional contact problems: theoretical relations, computational methods and numerical results. In: European Congress on Computational Methods in Applied Sciences and Engineering: ECCOMAS (2004)

    Google Scholar 

  27. Martins, J.A.C., Pinto da Costa, A.: Computation of bifurcations and instabilities in some frictional contact problems. In: European Conference on Computational Mechanics: ECCM (2001)

    Google Scholar 

  28. Martins, J.A.C., Pinto da Costa, A., Figueiredo, I.N., Júdice, J.J.: The directional instability problem in systems with frictional contacts. Comput. Methods Appl. Mech. Eng. 193, 357–384 (2004)

    Article  MATH  Google Scholar 

  29. Mifflin, R.: Semismooth and semiconvex functions in constrained optimization. SIAM J. Control Optim. 15, 957–972 (1977)

    Article  MathSciNet  Google Scholar 

  30. Pang, J.S., Facchinei, F.: Finite-Dimensional Variational Inequalities and Complementarity Problems. Operations Research, vol. 2. Springer, New York (2003)

    Google Scholar 

  31. Pang, J.S.: Newton’s method for B-differentiable equations. Math. Oper. Res. 15, 311–465 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  32. Pinto da Costa, A., Seeger, A.: Cone-constrained eigenvalue problems: theory and algorithms. Comput. Optim. Appl. 45(1), 25–57 (2008)

    Article  MathSciNet  Google Scholar 

  33. Pinto da Costa, A., Seeger, A.: Numerical resolution of cone-constrained eigenvalues problems. J. Comput. Appl. Math. 28, 37–61 (2009)

    MathSciNet  MATH  Google Scholar 

  34. Qi, L.: Convergence analysis of some algorithms for solving nonsmooth equations. Math. Oper. Res. 18, 227–244 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  35. Qi, L.: Regular pseudo-smooth NCP and BVIP functions and globally and quadratically convergent generalized Newton methods for complementarity and variational inequality problems. Technical report AMR 97/14, The University of New South Wales, Sydney, Australia (1997)

  36. Queiroz, M., Júdice, J.J., Humes, C.: The symmetric eigenvalue complementarity problem. Math. Comput. 73(248), 1849–1863 (2003)

    Article  Google Scholar 

  37. Qi, L., Sun, J.: A nonsmooth version of Newton’s method. Math. Program. 58, 353–367 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  38. Seeger, A.: Eigenvalue analysis of equilibrium processes defined by linear complementarity conditions. Linear Algebra Appl. 292, 1–14 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  39. Seeger, A., Torki, M.: On eigenvalues induced by a cone constraint. Linear Algebra Appl. 372, 181–206 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  40. Seeger, A., Vicente-Pérez, J.: On cardinality of Pareto spectra. Electron. J. Linear Algebra 22, 758–766 (2011)

    MathSciNet  MATH  Google Scholar 

  41. Tanaka, Y.: Some generalized methods of optimal scaling and their asymptotic theories: the case of multiple responses-multiple factors. Ann. Inst. Stat. Math. 30, 329–348 (1978)

    Article  MATH  Google Scholar 

  42. Tisseur, F., Meerbergen, K.: The quadratic eigenvalue problem. J. Soc. Ind. Appl. Math. 43, 235–286 (2001)

    MathSciNet  MATH  Google Scholar 

  43. Ulbrich, M.: In: Semismooth Newton Methods for Variational Inequalities and Constrained Optimization Problems in Function Spaces. MOS-SIAM Series on Optimization (2011)

    Chapter  Google Scholar 

Download references

Acknowledgements

The first author wishes to thank Professor Jonathan Borwein for some stimulating discussions about the new method LPM and particularly Lemma 3.

The authors wish to thank also Professor Alberto Seeger for his careful reading of the first version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samir Adly.

Additional information

Dedicated to Jonathan Borwein in honor of his 60th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adly, S., Rammal, H. A new method for solving Pareto eigenvalue complementarity problems. Comput Optim Appl 55, 703–731 (2013). https://doi.org/10.1007/s10589-013-9534-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-013-9534-y

Keywords

Navigation