Skip to main content
Log in

Smoothing SQP algorithm for semismooth equations with box constraints

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

In this paper, in order to solve semismooth equations with box constraints, we present a class of smoothing SQP algorithms using the regularized-smooth techniques. The main difference of our algorithm from some related literature is that the correspondent objective function arising from the equation system is not required to be continuously differentiable. Under the appropriate conditions, we prove the global convergence theorem, in other words, any accumulation point of the iteration point sequence generated by the proposed algorithm is a KKT point of the corresponding optimization problem with box constraints. Particularly, if an accumulation point of the iteration sequence is a vertex of box constraints and additionally, its corresponding KKT multipliers satisfy strictly complementary conditions, the gradient projection of the iteration sequence finitely terminates at this vertex. Furthermore, under local error bound conditions which are weaker than BD-regular conditions, we show that the proposed algorithm converges superlinearly. Finally, the promising numerical results demonstrate that the proposed smoothing SQP algorithm is an effective method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amat, S., Busquier, S.: A modified secant method for semismooth equations. Appl. Math. Lett. 16, 877–881 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  2. Burke, J.V., Ferris, M.C.: Weak sharp minima in mathematical programming. SIAM J. Control Optim. 31, 1340–1359 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  3. Du, S.Q., Gao, Y.: Convergence analysis of nonsmooth equations for the general nonlinear complementarity problem. Nonlinear Anal. 70, 764–771 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Geiger, C., Kanzow, C.: On the resolution of monotone complementarity problems. Comput. Optim. Appl. 5, 155–173 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  5. Huyer, W., Neumaier, A.: A new exact penalty function. SIAM J. Optim. 13, 1141–1158 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ito, K., Kunisch, K.: On a semi-smooth Newton method and its globalization. Math. Program. 118, 347–370 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Jiang, H.Y., Ralph, D.: Global and local superlinear convergence analysis of Newton-type methods for semismooth equations with smooth least squares. In: Reformulation-Non-smooth, Piecewise Smooth, Semismooth and Smoothing Methods, pp. 181–209. Kluwer Academic, Boston (1998)

    Chapter  Google Scholar 

  8. Kanzow, C.: Some equation-based methods for the nonlinear complementarity problem. Optim. Methods Softw. 3, 327–340 (1994)

    Article  Google Scholar 

  9. Kanzow, C., Klug, A.: An interior-point affine-scaling trust-region method for semismooth equations with box constraints. Comput. Optim. Appl. 37, 329–353 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Li, D.H., Fukushima, M.: Globally convergent Broyden-like methods for semismooth equations and applications to VIP, NCP and MCP. Ann. Oper. Res. 103, 71–97 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ling, C., Ni, Q., Qi, L.Q., Wu, S.-Y.: A new smoothing Newton-type algorithm for semi-infinite programming. J. Glob. Optim. 47, 133–159 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Mangasarian, O.L., Solodov, M.V.: Nonlinear complementarity as unconstrained and constrained minimization. Math. Program., Ser. B 62, 277–297 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ma, C.F., Tang, J.: The quadratic convergence of a smooth Levenberg-Marquardt method for nonlinear complementarity problem. Appl. Math. Comput. 197, 566–581 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ma, C., Wang, C.Y.: A nonsmooth Levenberg-Marquardt method for solving semi-infinite programming problems. J. Comput. Appl. Math. 230, 633–642 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Pang, J.S., Gabriel, S.A.: NE/SQP: A robust algorithm for the nonlinear complementarity problem. Math. Program. 60, 295–337 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  16. Potra, F.A., Qi, L.Q., Sun, D.F.: Secant methods for semismooth equations. Numer. Math. 80, 305–324 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  17. Qi, L.Q., Sun, J.: A nonsmooth version of Newton’s method. Math. Program. 58, 353–367 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  18. Qi, L.Q., Sun, D.F., Zhou, G.L.: A primal-dual algorithm for minimizing a sum of Euclidean norms. J. Comput. Appl. Math. 138, 127–150 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  19. Qi, L.Q., Wu, S.Y., Zhou, G.L.: Semismooth Newton methods for solving semi-infinite programming problems. J. Glob. Optim. 27, 215–232 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  20. Qi, L.Q., Tong, X.J., Li, D.: Active-set projected trust region algorithm for box constrained nonsmooth equations. J. Optim. Theory Appl. 120, 601–625 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  21. Smietanski, M.J.: On a new class parametrized Newton-like method for semismooth equations. Appl. Math. Comput. 193, 430–437 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  22. Solodov, M.V., Tseng, P.: Some methods based on the D-gap function for solving monotone variational inequalities. Comput. Optim. Appl. 17, 255–277 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  23. Stein, O., Tezel, A.: The semismooth approach for semi-infinite programming without strict complementarity. SIAM J. Optim. 20, 1052–1072 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Tong, X.J., Zhou, S.Z.: A smooth projected Newton-type method for semismooth equations with bound constraints. J. Ind. Manag. Optim. 1, 235–250 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  25. Tong, X.J., Li, D.H., Qi, L.Q.: An iterative method for solving semi-smooth equations. J. Comput. Appl. Math. 146, 1–10 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  26. Wang, C.Y., Liu, Q., Yang, X.M.: Convergence properties of nonmonotone spectral projected gradient methods. J. Comput. Appl. Math. 182, 51–66 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  27. Ulbrich, M.: Non-monotone trust-region methods for bound-constrained semismooth equations with applications to nonlinear mixed complementarity problems. SIAM J. Optim. 11, 889–917 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  28. Xiu, N.H., Zhang, J.Z.: Local convergence analysis of projection-type algorithms: a unified approach. J. Optim. Theory Appl. 115, 211–230 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  29. Zhu, D.T.: Affine scaling interior Levenberg-Marquardt method for bound-constrained semismooth equations under local error bound conditions. J. Comput. Appl. Math. 219, 198–215 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  30. Zitarelli, D.E.: Connected sets and the AMS, 1901–1921. Not. Am. Math. Soc. 56, 450–458 (2009)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank referees for their constructive comments and suggestions, which significantly improved the presentation of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng Ma.

Additional information

This research was partially supported by the National Natural Science Foundation of China under Grants (10971118, 10901096, 11271226, 11271233, 11101231) and the Scientific Research Fund for the Excellent Middle-Aged and Youth Scientists of Shandong Province under Grant No. BS2012SF027, BS2010SF010, ZR2012AM016.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, C., Liu, Q. & Ma, C. Smoothing SQP algorithm for semismooth equations with box constraints. Comput Optim Appl 55, 399–425 (2013). https://doi.org/10.1007/s10589-012-9524-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-012-9524-5

Keywords

Navigation