Skip to main content
Log in

Approximation of low rank solutions for linear quadratic control of partial differential equations

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

Algebraic Riccati equations (ARE) of large dimension arise when using approximations to design controllers for systems modeled by partial differential equations. We use a modified Newton method to solve the ARE that takes advantage of several special features of these problems. The modified Newton method leads to a right-hand side of rank equal to the number of inputs regardless of the weights. Thus, the resulting Lyapunov equation can be more efficiently solved. The Cholesky-ADI algorithm is used to solve the Lyapunov equation resulting at each step. The algorithm is straightforward to code. Performance is illustrated with a number of standard examples. An example on controlling the deflection of the Euler-Bernoulli beam indicates that for weakly damped problems a low rank solution to the ARE may not exist. Further analysis supports this point.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Antoulas, A.C., Sorensen, D.C., Zhou, Y.: On the decay rate of Hankel singular values and related issues. Syst. Control Lett. 46, 323–342 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  2. Banks, H.T., Inman, D.J.: On damping mechanisms in beams. ICASE report No. 89-64, NASA, Langley (1989)

  3. Banks, H.T., Ito, K.: Approximation in LQR problems for infinite-dimensional systems with unbounded input operators. J. Math. Syst. Estim. Control 7(1), 34 (1997) (electronic)

    MathSciNet  Google Scholar 

  4. Banks, H.T., Ito, K.: A numerical algorithm for optimal feedback gains in high dimensional linear quadratic regulator problems. SIAM J. Control Optim. 29(3), 499–515 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  5. Banks, H.T., Kunisch, K.: The linear regulator problem for parabolic systems. SIAM J. Control Optim. 22(5), 684–698 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bartels, R.H., Stewart, W.: Solution of the matrix equation AX+XB=C. Commun. ACM 15, 820–826 (1972)

    Article  Google Scholar 

  7. Benner, P.: Efficient algorithms for large-scale quadratic matrix equations. Proc. Appl. Math. Mech. 1(1), 492–495 (2002)

    Article  MATH  Google Scholar 

  8. Benner, P.: Solving large-scale control problems. IEEE Control Syst. Mag. 24(1), 44–59 (2004)

    Article  Google Scholar 

  9. Burns, J.A., Hulsing, K.P.: Numerical methods for approximating functional gains in LQR boundary control problems. Math. Comput. Model. 33(1), 89–100 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  10. Chahlaoui, Y., Van Dooren, P.: A collection of Benchmark examples for model reduction of linear time invariant dynamical systems. SLICOT Working Note 2002-2. http://www.win.tue.nl/niconet/

  11. Curtain, R., Zwart, H.: An Introduction to Infinite-Dimensional Linear Systems Theory. Springer, Berlin (1995)

    MATH  Google Scholar 

  12. Curtain, R.F.: On model reduction for control design for distributed parameter systems. In: Smith, R., Demetriou, M. (eds.) Research Directions in Distributed Parameter Systems, pp. 95–121. SIAM, Philadelphia (1993)

    Google Scholar 

  13. Ellner, N., Wachpress, E.L.: Alternating direction implicit iteration for systems with complex spectra. SIAM J. Numer. Anal. 28(3), 859–870 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  14. De Santis, A., Germani, A., Jetto, L.: Approximation of the algebraic Riccati equation in the Hilbert space of Hilbert-Schmidt operators. SIAM J. Control Optim. 31(4), 847–874 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  15. Gibson, J.S.: The Riccati integral equations for optimal control problems on Hilbert spaces. SIAM J. Control Optim. 17, 637–565 (1979)

    Article  MathSciNet  Google Scholar 

  16. Gibson, J.S.: Linear-quadratic optimal control of hereditary differential systems: infinite dimensional Riccati equations and numerical approximations. SIAM J. Control Optim. 21, 95–139 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  17. Golub, G.H., van Loan, C.F.: Matrix Computations. John Hopkins Press, Baltimore (1989)

    MATH  Google Scholar 

  18. Grad, J.R., Morris, K.A.: Solving the linear quadratic control problem for infinite-dimensional systems. Comput. Math. Appl. 32(9), 99–119 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  19. Ito, K.: Strong convergence and convergence rates of approximating solutions for algebraic Riccati equations in Hilbert spaces. In: Kappel, F., Kunisch, K., Schappacher, W. (eds.) Distributed Parameter Systems, pp. 151–166. Springer, Berlin (1987)

    Google Scholar 

  20. Ito, K., Morris, K.A.: An approximation theory of solutions to operator Riccati equations for H control. SIAM J. Control Optim. 36, 82–99 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  21. Kleinman, D.: On an iterative technique for Riccati equation computations. IEEE Trans. Autom. Control 13, 114–115 (1968)

    Article  Google Scholar 

  22. Laub, A.J.: A Schur method for solving algebraic Riccati equations. IEEE Trans. Autom. Control 24, 913–921 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  23. Lasiecka, I., Triggiani, R.: Control Theory for Partial Differential Equations: Continuous and Approximation Theories, Part 1. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  24. Lasiecka, I., Triggiani, R.: Control Theory for Partial Differential Equations: Continuous and Approximation Theories, Part 2. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  25. Li, J.R., White, J.: Low rank solution of Lyapunov equations. SIAM J. Matrix Anal. Appl. 24, 260–280 (2002)

    Article  MathSciNet  Google Scholar 

  26. Lu, A., Wachpress, E.L.: Solution of Lyapunov equations by alternating direction implicit iteration. Comput. Math. Appl. 21(9), 43–58 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  27. Morris, K.A.: Design of finite-dimensional controllers for infinite-dimensional systems by approximation. J. Math. Syst. Estim. Control 4, 1–30 (1994)

    Google Scholar 

  28. Morris, K.A.: Introduction to Feedback Control. Harcourt-Brace, San Diego (2001)

    MATH  Google Scholar 

  29. Morris, K.A., Taylor, K.J.: A variational calculus approach to the modelling of flexible manipulators. SIAM Rev. 38(2), 294–305 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  30. Morris, K.A., Vidyasagar, M.: A Comparison of different models for beam vibrations from the standpoint of controller design. ASME J. Dyn. Syst. Meas. Control 112, 349–356 (1990)

    Article  MATH  Google Scholar 

  31. Morris, K., Navasca, C.: Solution of algebraic Riccati equations arising in control of partial differential equations. In: Cagnola, J. (ed.) Control and Boundary Analysis. Marcel Dekker, New York (2004)

    Google Scholar 

  32. Penzl, T.: Eigenvalue decay bounds for solutions of Lyapunov equations: the symmetric case. Syst. Control Lett. 40, 139–144 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  33. Penzl, T.: A cyclic low-rank Smith method for large sparse Lyapunov equations. SIAM J. Sci. Comput. 21(4), 1401–1418 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  34. Penzl, T.: LYAPACK users’s guide. http://www.win.tue.nl/niconet

  35. Potter, J.E.: Matrix quadratic solutions. SIAM J. Appl. Math. 14, 496–501 (1966)

    Article  MATH  MathSciNet  Google Scholar 

  36. Rosen, I.G., Wang, C.: A multilevel technique for the approximate solution of operator Lyapunov and algebraic Riccati equations. SIAM J. Numer. Anal. 32, 514–541 (1994)

    Article  MathSciNet  Google Scholar 

  37. Russell, D.L.: Mathematics of Finite Dimensional Control Systems: Theory and Design. Marcel Dekker, New York (1979)

    MATH  Google Scholar 

  38. Smith, R.A.: Matrix equation XA+BX=C. SIAM J. Appl. Math. 16, 198–201 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  39. Wachpress, E.L.: The ADI model problem. Preprint (1995)

  40. Wachpress, E.: Iterative solution of the Lyapunov matrix equation. Appl. Math. Lett. 1, 87–90 (1988)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kirsten Morris.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morris, K., Navasca, C. Approximation of low rank solutions for linear quadratic control of partial differential equations. Comput Optim Appl 46, 93–111 (2010). https://doi.org/10.1007/s10589-008-9192-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-008-9192-7

Keywords

Navigation