Skip to main content
Log in

An algorithm for the generalized quadratic assignment problem

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

This paper reports on a new algorithm for the Generalized Quadratic Assignment problem (GQAP). The GQAP describes a broad class of quadratic integer programming problems, wherein M pair-wise related entities are assigned to N destinations constrained by the destinations’ ability to accommodate them. This new algorithm is based on a Reformulation Linearization Technique (RLT) dual ascent procedure. Experimental results show that the runtime of this algorithm is as good or better than other known exact solution methods for problems as large as M=20 and N=15.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, W.P., Sherali, H.D.: A tight linearization and an algorithm for zero-one quadratic programming problems. Manag. Sci. 32, 1274–1290 (1986)

    MathSciNet  MATH  Google Scholar 

  2. Adams, W.P., Sherali, H.D.: Linearization strategies for a class of zero-one mixed integer programming problems. Oper. Res. 38, 217–226 (1990)

    MathSciNet  MATH  Google Scholar 

  3. Adams, W.P., Guignard, M., Hahn, P.M., Hightower, W.L.: A level-2 reformulation-linearization technique bound for the quadratic assignment problem. Eur. J. Oper. Res. 180, 983–996 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Anstreicher, K.M., Brixius, N.W.: A new bound for the quadratic assignment problem based on convex quadratic programming. Math. Program. 89, 341–357 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  5. Balachandran, V.: An integer generalized transportation model of optimal job assignment to computer networks. Graduate School of Industrial Administration, Carnegie-Mellon University, Pittsburgh, PA, Working Paper 34-72-3 (1972)

  6. Benders, J.F., van Nunen, J.A.E.E.: A property of assignment type mixed integer linear programming problems. Oper. Res. Lett. 2, 47–52 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  7. Billionnet, A., Elloumi, S.: An algorithm for finding the k-best allocations of a tree structured program. J. Parallel Distrib. Comput. 26, 225–232 (1995)

    Article  MATH  Google Scholar 

  8. Billionnet, A., Elloumi, S.: Best reduction of the quadratic semi-assignment problem. Discrete Appl. Math. (DAM) 109, 197–213 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  9. Burer, S., Vandenbussche, D.: Solving lift-and-project relaxations of binary integer programs. SIAM J. Optim. 16, 726–750 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cordeau, J.-F., Gaudioso, M., Laporte, G., Moccia, L.: A memetic heuristic for the generalized quadratic assignment problem. INFORMS J. Comput. 19, 433–443 (2006)

    Article  MathSciNet  Google Scholar 

  11. Diaz, J.A., Fernandez, E.: A tabu search heuristic for the generalized assignment problem. Eur. J. Oper. Res. 132, 22–38 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  12. Drezner, Z., Hahn, P.M., Taillard, E.: Recent advances for the quadratic assignment problem with special emphasis on instances that are difficult for meta-heuristic methods. Ann. Oper. Res. 139, 65–94 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. Elloumi, S.: The task assignment problem and the constrained task assignment problem. Instances and Solution files, 2003. Available at: http://cedric.cnam.fr/oc/TAP/TAP.html

  14. Elloumi, S., Roupin, F., Soutif, E.: Comparison of different lower bounds for the constrained module allocation problem. Technical Report TR CEDRIC No 473 (2003)

  15. Fisher, M.L., Jaikumar, R.: A generalized assignment heuristic for vehicle routing. Networks 11, 109–124 (1981)

    Article  MathSciNet  Google Scholar 

  16. Fisher, M.L., Jaikumar, R., Van Wassenhove, L.N.: A multiplier adjustment method for the generalized assignment problem. Manag. Sci. 32, 1095–1103 (1986)

    MATH  Google Scholar 

  17. Grant, T.L.: An evaluation and analysis of the resolvent sequence method for solving the quadratic assignment problem. Master’s Thesis, Dept. of Systems Engineering, University of Pennsylvania, Philadelphia, PA 19104 (1989)

  18. Guignard, M., Rosenwein, M.: An improved dual-based algorithm for the generalized assignment problem. Oper. Res. 37, 658–663 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  19. Guignard, M., Hahn, P.M., Ding, Z.: Hybrid ARQ symbol mapping in digital wireless communication systems based on the quadratic 3-dimensional assignment problem (Q3AP). NSF Grant: DMI-0400155 (2004)

  20. Hahn, P.M., Grant, T.L.: Lower bounds for the quadratic assignment problem based upon a dual formulation. Oper. Res. 46, 912–922 (1998)

    MathSciNet  MATH  Google Scholar 

  21. Hahn, P.M., Krarup, J.: A hospital facility problem finally solved. J. Intell. Manuf. 12, 487–496 (2001)

    Article  Google Scholar 

  22. Hahn, P.M., Grant, T.L., Hall, N.: A branch-and-bound algorithm for the quadratic assignment problem based on the Hungarian method. Eur. J. Oper. Res. 108, 629–640 (1998)

    Article  MATH  Google Scholar 

  23. Hahn, P.M., Hightower, W.L., Johnson, T.A., Guignard-Spielberg, M., Roucairol, C.: Tree elaboration strategies in branch-and-bound algorithms for solving the quadratic assignment problem. Yugosl. J. Oper. Res. 11, 41–60 (2001)

    MathSciNet  MATH  Google Scholar 

  24. Jörnsten, K., Näsberg, M.: A new Lagrangean-relaxation approach to the generalized assignment problem. Eur. J. Oper. Res. 27, 313–323 (1986)

    Article  MATH  Google Scholar 

  25. Karisch, S.E., Çela, E., Clausen, J., Espersen, T.: A dual framework for lower bounds of the quadratic assignment problem based on linearization. Computing 63, 351–403 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kim, B.-J.: Investigation of methods for solving new classes of quadratic assignment problems (QAPs). PhD thesis, Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA 19104 (May 2006)

  27. Laguna, M., Kelly, J.P., González-Velarde, J.L., Glover, F.: Tabu search for the multilevel generalized assignment problem. Eur. J. Oper. Res. 82, 176–189 (1995)

    Article  MATH  Google Scholar 

  28. Lee, C.-G., Ma, Z.: The generalized quadratic assignment problem. Research Report, Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, M5S 3G8, Canada (2004)

  29. Loiola, E.M., de Abreu, N.M.M., Boaventura-Netto, P.O., Hahn, P.M., Querido, T.: A survey for the quadratic assignment problem. Invit. Rev. Eur. J. Oper. Res. 176, 657–690 (2007)

    Article  MATH  Google Scholar 

  30. Magirou, V.F.: An improved partial solution to the task assignment and multiway cut problems. Oper. Res. Lett. 12, 3–10 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  31. Magirou, V.F., Milis, J.Z.: An algorithm for the multiprocessor assignment problem. Oper. Res. Lett. 8, 351–356 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  32. Martello, S., Toth, P.: Knapsack Problems: Algorithms and Computer Implementations. Wiley, New York (1990)

    MATH  Google Scholar 

  33. Ramakrishnan, K.G., Resende, M.G.C., Ramachandran, B., Pekny, J.F.: Tight QAP bounds via linear programming. In: Pardalos, P.M., Migdalas, A., Burkard, E. (eds.) Combinatorial and Global Optimization, pp. 297–303. World Scientific, Republic of Singapore (2002)

    Google Scholar 

  34. Rendl, F., Sotirov, R.: Bounds for the quadratic assignment problem using the bundle method. Accepted to Mathematical Programming. Available at http://www.springerlink.com/content/a878n099r184510g/

  35. Resende, M.G.C., Ramakrishnan, K.G., Drezner, Z.: Computing lower bounds for the quadratic assignment with an interior point algorithm for linear programming. Oper. Res. 43, 781–791 (1995)

    MathSciNet  MATH  Google Scholar 

  36. Romeijn, H.E., Morales, D.R.: A class of greedy algorithms for the generalized assignment problem. Discrete Appl. Math. 103, 209–235 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  37. Ross, G.T., Soland, R.M.: A branch-and-bound algorithm for the generalized assignment problem. Math. Program. 8, 91–103 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  38. Roupin, F.: From linear to semi-definite programming: an algorithm to obtain semidefinite relaxations for bivalent quadratic problems. J. Comb. Optim. 8, 469–493 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  39. Sahni, S., Gonzalez, T.: P-complete approximation problems. J. Assoc. Comput. Mach. 23, 555–565 (1976)

    MathSciNet  MATH  Google Scholar 

  40. Savelsbergh, M.: A branch-and-price algorithm for the generalized assignment problem. Oper. Res. 45, 831–841 (1997)

    MathSciNet  MATH  Google Scholar 

  41. Sherali, H.D., Adams, W.P.: A hierarchy of relaxations between the continuous and convex hull representations for zero-one programming problems. SIAM J. Discrete Math. 3, 411–430 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  42. Sherali, H.D., Adams, W.P.: A hierarchy of relaxations and convex hull characterizations for mixed-integer zero-one programming problems. Discrete Appl. Math. 52, 83–106 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  43. Sherali, H.D., Adams, W.P.: A Reformulation-Linearization Technique for Solving Discrete and Continuous Non-convex Problems, 1st edn. Kluwer Academic, Norwell (1999)

    Google Scholar 

  44. Sofianopoulous, S.: Simulated annealing applied to the process allocation problem. Eur. J. Oper. Res. 60, 327–334 (1992)

    Article  Google Scholar 

  45. Sofianopoulous, S.: The process allocation problem: a survey of the application of graph-theoretic and integer programming approaches. J. Oper. Res. Soc. 43, 407–413 (1992)

    Article  Google Scholar 

  46. Yagiura, M., Yamaguchi, T., Ibaraki, T.: A variable depth search algorithm with branching search for the generalized assignment problem. Optim. Methods Softw. 10, 419–441 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  47. Yagiura, M., Yamaguchi, T., Ibaraki, T.: A variable depth search algorithm with branching search for the generalized assignment problem. In: Martello, S., Osman, I.H., Roucairol, C. (eds.) Meta-heuristics: Advances and Trends in Local Search Paradigms for Optimization, pp. 459–471. Kluwer Academic, Boston (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter M. Hahn.

Additional information

Current address of P.M. Hahn: 2127 Tryon Street, Philadelphia, PA 19146-1228, USA.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hahn, P.M., Kim, BJ., Guignard, M. et al. An algorithm for the generalized quadratic assignment problem. Comput Optim Appl 40, 351–372 (2008). https://doi.org/10.1007/s10589-007-9093-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-007-9093-1

Keywords

Navigation