Skip to main content
Log in

Hybrid evolutionary algorithm with Hermite radial basis function interpolants for computationally expensive adjoint solvers

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

In this paper, we present an evolutionary algorithm hybridized with a gradient-based optimization technique in the spirit of Lamarckian learning for efficient design optimization. In order to expedite gradient search, we employ local surrogate models that approximate the outputs of a computationally expensive Euler solver. Our focus is on the case when an adjoint Euler solver is available for efficiently computing the sensitivities of the outputs with respect to the design variables. We propose the idea of using Hermite interpolation to construct gradient-enhanced radial basis function networks that incorporate sensitivity data provided by the adjoint Euler solver. Further, we conduct local search using a trust-region framework that interleaves gradient-enhanced surrogate models with the computationally expensive adjoint Euler solver. This ensures that the present hybrid evolutionary algorithm inherits the convergence properties of the classical trust-region approach. We present numerical results for airfoil aerodynamic design optimization problems to show that the proposed algorithm converges to good designs on a limited computational budget.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alexandrov, N., Dennis, J.E., Lewis, R.M., Torczon, V.: A trust region framework for managing the use of approximation models in optimization. Struct. Optim. 15(1), 16–23 (1998)

    Article  Google Scholar 

  2. Bishop, C.: Neural Networks for Pattern Recognition. Oxford University Press, Oxford (1995)

    Google Scholar 

  3. Booker, A.J., Dennis, Jr J.E., Frank, P.D., Serafini, D.B., Torczon, V., Trosset, M.W.: A rigorous framework for optimization of expensive functions by surrogates. Struct. Optim. 17(1), 1–13 (1998)

    Article  Google Scholar 

  4. Burgreen, G.W., Baysal, O.: Three-dimensional aerodynamic shape optimization of wings using discrete sensitivity analysis. AIAA J. 34(9), 1761–1770 (1996)

    Article  MATH  Google Scholar 

  5. El-Beltagy, M.A., Nair, P.B., Keane, A.J.: Metamodelling techniques for evolutionary optimization of computationally expensive problems: promises and limitations. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 196–203, Morgan Kaufman, Los Altos (1999)

    Google Scholar 

  6. Fasshauer, G.: Hermite interpolation with radial basis functions on spheres. Adv. Comput. Math. 10, 81–96 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  7. Foster, I., Kesselman, C., Tuecke, S.: The anatomy of the grid: enabling scalable virtual organizations, Int. J. Supercomput. Appl. 15(3) (2001)

  8. Friedman, J.H.: Multivariate adaptive regression splines. Ann. Stat. 19, 1–141 (1991)

    Article  MATH  Google Scholar 

  9. Giannakoglou, K.C.: Design of optimal aerodynamic shapes using stochastic optimization methods and computational intelligence. Prog. Aerosp. Sci. 38, 43–76 (2001)

    Article  Google Scholar 

  10. Giles, M.B., Pierce, N.A.: An introduction to the adjoint approach to design. Flow Turbul. Combust. 65, 393–415 (2000)

    Article  MATH  Google Scholar 

  11. Hardy, R.L.: Theory and applications of the multiquadric-biharmonic method. Comput. Math. Appl. 19, 163–208 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hicks, R.M., Henne, P.A.: Wing design by numerical optimization. J. Aircr. 15(7), 407–412 (1978)

    Google Scholar 

  13. Ho, Q.T., Ong, Y.S., Cai, W.T.: Gridifying aerodynamic design problem using GridRPC. In: Second Grid and Cooperative Computing: Second International Workshop 2003, Part I, Shanghai, China. Lecture Notes in Computer Science, vol. 3032, pp. 83–90. Springer, Heidelberg (2004)

    Google Scholar 

  14. Jameson, A.: Aerodynamic design via control theory. J. Sci. Comput. 3(3), 233–260 (1988)

    Article  MATH  Google Scholar 

  15. Jameson, A., Reuther, J.: Control theory based airfoil design using the Euler equations. AIAA 94-4272-CP (1994)

  16. Jameson, A., Vassberg, J.C.: Computational fluid dynamics for aerodynamic design: its current and future impact. AIAA 2001-0538 (January 2001)

  17. Jin, R., Chen, W., Simpson, T.W.: Comparative studies of metamodeling techniques under multiple modeling criteria. Struct. Multidiscip. Optim. 23(1), 1–13 (2001)

    Article  Google Scholar 

  18. Jin, Y.: A comprehensive survey of fitness approximation in evolutionary computation. Soft Comput. J. 9(1), 3–12 (2005)

    Article  Google Scholar 

  19. Jin, Y., Olhofer, M., Sendhoff, B.: A framework for evolutionary optimization with approximate fitness functions. IEEE Trans. Evol. Comput. 6(5), 481–494 (2002)

    Article  Google Scholar 

  20. Keane, A.J., Nair, P.B.: Computational Approaches for Aerospace Design. Wiley, New York (2005). Chapter 4

    Google Scholar 

  21. Lawrence, C.T., Tits, A.L.: A computionally efficient feasible sequential quadratic programming algorithm. SIAM J. Optim. 11(4), 1092–1118 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  22. Liang, K.H., Yao, X., Newton, C.: Evolutionary search of approximated N-dimensional landscapes. Int. J. Knowl.-Based Intell. Eng. Syst. 4(3), 172–183 (2001)

    Google Scholar 

  23. Lions, J.L.: Optimal Control Of Systems Governed by Partial Differential Equations. Springer, Berlin (1971). Translated by S.K. Mitter

    MATH  Google Scholar 

  24. Myers, R.H., Montgomery, D.C.: Response Surface Methodology: Process and Product Optimization Using Designed Experiments. Wiley, New York (1995)

    MATH  Google Scholar 

  25. Nanyang Campus Grid: http://ntu-cg.ntu.edu.sg/

  26. Narcowich, F.J., Ward, J.D.: Generalized Hermite interpolation via matrix-valued conditionally positive definite functions. Math. Comput. 63(208), 661–687 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  27. Ng, H.K., Lim, D., Ong, Y.S., Lee, B.S., Freund, L., Parvez, S., Sendhoff, B.: A multi-cluster grid enabled evolution framework for aerodynamic airfoil design optimization. In: Wang, L.P., Chen, K., Ong, Y.S. (eds.) International Conference on Natural Computing. Lecture Notes in Computer Science, vol. 3611, pp. 1112–1121. Springer, New York (2005)

    Google Scholar 

  28. Ong, Y.S., Keane, A.J.: Meta-Lamarckian learning in memetic algorithm. IEEE Trans. Evol. Comput. 8(2), 99–110 (2004)

    Article  Google Scholar 

  29. Ong, Y.S., Nair, P.B., Keane, A.J.: Evolutionary optimization of computationally expensive problems via surrogate modeling. Am. Inst. Aeronaut. Astronaut. J. 41(4), 687–696 (2003)

    Google Scholar 

  30. Ong, Y.S., Nair, P.B., Keane, A.J., Wong, K.W.: Surrogate-assisted evolutionary optimization frameworks for high-fidelity engineering design problems. In: Jin, Y. (ed.) Knowledge Incorporation in Evolutionary Computation, pp. 307–331. Studies in Fuzziness and Soft Computing Series. Springer, New York (2004)

    Google Scholar 

  31. Ong, Y.S., Nair, P.B., Lum, K.Y.: Max-min surrogate-assisted evolutionary algorithm for robust aerodynamic design. IEEE Trans. Evol. Comput. 10(4), 392–404 (2006)

    Article  Google Scholar 

  32. Reuther, J., Jameson, A., Alonso, J.J., Rimlinger, M.J., Saunders, D.: Constrained multipoint aerodynamic shape optimization using adjoint formulation and parallel computers. AIAA Paper 97-0103 (January 1997)

  33. Rodriguez, J.F., Renaud, J.E., Watson, L.T.: Convergence of trust region augmented Lagrangian methods using variable fidelity approximation data. Struct. Optim. 5(3–4), 141–156 (1998)

    Article  Google Scholar 

  34. Sacks, J., Welch, W.J., Mitchell, T.J., Wynn, H.P.: Design and analysis of computer experiments. Stat. Sci. 4(4), 409–435 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  35. Serafini, D.B.: A framework for managing models in nonlinear optimization of computally expensive functions. Ph.D. Thesis, Rice University (1998)

  36. Simpson, T.W., Booker, A.J., Ghosh, D., Giunta, A.A., Koch, P.N., Yang, R.J.: Approximation methods in multidisciplinary analysis and optimization: a panel discussion, In: Proceedings of the Third ISSMO/AIAA Internet Conference on Approximations in Optimization, pp. 14–25 (2002)

  37. Song, W.B., Keane, A.J.: A study of shape parameterisation methods for airfoil optimisation. In: 10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, pp. 2031–2038 (2004). AIAA 2004-4482

  38. Williams, C.K.I., Rasmussen, C.E.: Gaussian processes for regression. In: Touretsky, D.S., Mozer, M.C., Hasselmo, M.E. (eds.) Advances in Neural Information Processing Systems. MIT Press, Cambridge (1996)

    Google Scholar 

  39. Zhongmin, W.: Hermite-Birkhoff interpolation of scattered data by radial basis functions. Approx. Theory Appl. 8, 1–10 (1992)

    Google Scholar 

  40. Zhou, Z.Z., Ong, Y.S., Nair, P.B., Keane, A.J., Lum, K.Y.: Combining global and local surrogate models to accelerate evolutionary optimization. IEEE Trans. Syst. Man Cybern. Part C 36(6), 814–823 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. S. Ong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ong, Y.S., Lum, K.Y. & Nair, P.B. Hybrid evolutionary algorithm with Hermite radial basis function interpolants for computationally expensive adjoint solvers. Comput Optim Appl 39, 97–119 (2008). https://doi.org/10.1007/s10589-007-9065-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-007-9065-5

Keywords

Navigation