Skip to main content
Log in

An alternative approach for non-linear optimal control problems based on the method of moments

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

We propose an alternative method for computing effectively the solution of non-linear, fixed-terminal-time, optimal control problems when they are given in Lagrange, Bolza or Mayer forms. This method works well when the nonlinearities in the control variable can be expressed as polynomials. The essential of this proposal is the transformation of a non-linear, non-convex optimal control problem into an equivalent optimal control problem with linear and convex structure. The method is based on global optimization of polynomials by the method of moments. With this method we can determine either the existence or lacking of minimizers. In addition, we can calculate generalized solutions when the original problem lacks of minimizers. We also present the numerical schemes to solve several examples arising in science and technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akhiezer, N., Krein, M.: Some Questions in the Theory of Moments. Translations of Mathematical Monographs, vol. 2. AMS, Providence (1962)

    MATH  Google Scholar 

  2. Balder, E.J.: Lectures on Young Measure Theory and Its Applications in Economics. Workshop di Theoria della Misura e Analisi Reale, Grado, 1997, Rend. Istit. Mat. Univ. Trieste

  3. Balder, E.J.: Young measure techniques for existence of Cournot–Nash–Walras equilibria. In: Wooders, M. (ed.) Topics in Mathematical Economics and Game Theory. Fields Institute Communications, vol. 23, pp. 31–39. AMS, Providence (1999)

    Google Scholar 

  4. Ben-Tal, A., Nemirovsky, A.: Lectures on Modern Convex Optimization. SIAM, Philadelphia (2001)

    MATH  Google Scholar 

  5. Betts, J.T.: Practical Methods for Optimal Control Using Non-linear Programming. SIAM, Philadelphia (2001)

    Google Scholar 

  6. Bloch, A.M., Crouch, P.E.: Optimal control, optimization and analytical mechanics. In: Baillieul, J., Willems, J.C. (eds.) Mathematical Control Theory. Springer, Berlin (1999)

    Google Scholar 

  7. Boyd, S., Vandenberge, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  8. Castillo, E., et al.: Building and Solving Mathematical Programming Models in Engineering and Science. Wiley, New York (2000)

    Google Scholar 

  9. Cesari, L.: Optimization, Theory and Applications. Springer, New York (1983)

    MATH  Google Scholar 

  10. Conn, A.R., Gould, N., Toint, P.: Trust-Region Methods. SIAM, Philadelphia (2000)

    MATH  Google Scholar 

  11. Craven, B.D.: Control and Optimization. Chapmann & Hall, Englewood Cliffs (1995)

    MATH  Google Scholar 

  12. Curto, R., Fialkow, L.A.: Solution of the truncated complex moment problem for flat data. Memoirs AMS 568 (1996)

  13. Curto, R., Fialkow, L.A.: Recursiveness, positivity and truncated moment problems. Houston J. Math. 17, 603–635 (1991)

    MATH  Google Scholar 

  14. Curto, R., Fialkow, L.A.: The truncated complex k-moment problem. Trans. AMS 352(6), 2825–2855 (2000)

    Article  MATH  Google Scholar 

  15. Egozcue, J., Meziat, R., Pedregal, P.: From a nonlinear, non-convex variational problem to a linear convex formulation. J. Appl. Math. Optim. 47, 27–44 (2003)

    Article  Google Scholar 

  16. Fattorini, H.O.: Infinite Dimensional Optimization Theory and Optimal Control. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  17. Fletcher, R.: Practical Methods of Optimization. Wiley, New York (1987)

    MATH  Google Scholar 

  18. Folcher, J.P., Andriot, C.: Multiobjective control for robot telemanipulators. In: Ghaoui, L.E., Niculescu, S. (eds.) Advances in Linear Matrix Inequality Methods in Control. SIAM, Philadelphia (2000)

    Google Scholar 

  19. Gatermann, K., Parrilo, P.A.: Symmetry groups, semidefinite programs, and sums of squares. J. Pure Appl. Algebra 192(1–3), 95–128 (2004)

    Article  MATH  Google Scholar 

  20. Haslinger, J., Mäkinen, R.A.E. Introduction to Shape Optimization: Theory, Approximation, and Computation. SIAM, Philadelphia (2003)

    MATH  Google Scholar 

  21. Henrion, D. Garulli, A. (eds.): Positive Polynomials in Control Series. Lecture Notes in Control and Information Sciences, vol. 312, Springer, New York (2005)

    Google Scholar 

  22. Henrion, D., Lasserre, J.B.: GloptiPoly: global optimization over polynomials with Matlab and SeDuMi. ACM Trans. Math. Softw. 29, 165–194 (2003)

    Article  MATH  Google Scholar 

  23. Horn, A., Johnson, R.: Matrix Analysis. Cambridge University Press, Cambridge (1985)

    MATH  Google Scholar 

  24. Jurdjevic, V.: Optimal control, geometry, and mechanics. In: Baillieul, J., Willems, J.C. (eds.) Mathematical Control Theory. Springer, Berlin (1999)

    Google Scholar 

  25. Krein, M.G., Nudelman, A.A.: The Markov Moment Problem and Extremal Problems. Translations of Mathematical Monographs, vol. 50. AMS, Providence (1977)

    MATH  Google Scholar 

  26. Lasserre, J.: Global optimization with polynomials and the problem of moments. SIAM J. Optim. 11, 796–817 (2001)

    Article  MATH  Google Scholar 

  27. Lasserre, J.: Semidefinite programming vs lp relaxations for polynomial programming. J. Math. Oper. Res. 27, 347–360 (2002)

    Article  MATH  Google Scholar 

  28. Lasserre, J.: SOS approximations of polynomials nonnegative on a real algebraic set. SIAM J. Optim. 16, 610–628 (2005)

    Article  MATH  Google Scholar 

  29. Lasserre, J.: A sum of squares approximation of nonnegative polynomials. SIAM J. Optim. 16, 751–765 (2006)

    Article  MATH  Google Scholar 

  30. Lasserre, J., Prieto-Rumeau, T.: SDP vs. LP relaxations for the moment approach in some performance evaluation problems. Stoch. Models 20, 439–456 (2004)

    Article  MATH  Google Scholar 

  31. Laurent, M.: Revisiting two theorems of Curto and Fialkow on moment matrices. Proc. AMS 133(10), 2965–2976 (2005)

    Article  MATH  Google Scholar 

  32. Laurent, M., Jibetean, D.: Semidefinite approximations for global unconstrained polynomial optimization. SIAM J. Optim. 16(2), 490–514 (2005)

    Article  MATH  Google Scholar 

  33. Luenberger, D.E.: Linear and Nonlinear Programming. Addison-Wesley, Reading (1984)

    MATH  Google Scholar 

  34. MathWorks Inc.: Optimization Toolbox for Use with Matlab. User’s Guide (2000)

  35. Mazzaro, M.C., Parrilo, P.A., Sánchez Peña, R.S.: Robust identification toolbox. Lat. Am. Appl. Res. 34(2), 91–100 (2004)

    Google Scholar 

  36. Meziat, R.: The method of moments in global optimization. J. Math. Sci. 116, 3303–3324 (2003)

    Article  MATH  Google Scholar 

  37. Meziat, R.: Analysis of non-convex polynomial programs by the method of moments. In: Floudas, C., Pardalos, P. (eds.) Frontiers in Global Optimization, Nonconvex Optimization and its Applications, vol. 74, pp. 353–372. Kluwer, Dordrecht (2003)

    Google Scholar 

  38. Meziat, R.: Analysis of two-dimensional non-convex variational problems. In: Qi, L., Teo, K., Yang, X. (eds.) Optimization and Control with Applications. Springer, Berlin (2005)

    Google Scholar 

  39. Meziat, R., Villalobos, J.: Analysis of microstructures and phase transition phenomena in one-dimensional, non-linear elasticity by convex optimization. J. Struct. Interdisciplinary Optim. 32(6), 507–519 (2006)

    Article  Google Scholar 

  40. Milyutin, A.A., Osmolovskii, N.P.: Calculus of Variations and Optimal Control. Translations of Mathematical Monographs, vol. 180, AMS, Providence (1998)

    MATH  Google Scholar 

  41. Mordukhovich, B.S.: Existence Theorems in Non-convex Optimal Control. Calculus of Variations and Optimal Control, Technion/Chapman and Hall, London (1988)

    Google Scholar 

  42. Muñoz, J., Pedregal, P.: A refinement on existence results in nonconvex optimal control. J. Appl. Math. Optim. 41, 129–140

  43. Nesterov, Y., Squared Functional Systems and Optimization Problems in High Performance Optimization. Frenk, H., Roos, K., Terlaky, T. (eds.) Kluwer, Dordrecht (2000)

  44. Nesterov, Y., Nemirovsky, A.: Interior-Point Polynomial Methods in Convex Programming. Studies in Applied Mathematics, vol. 13. SIAM, Philadelphia (1994)

    Google Scholar 

  45. Nocedal, J., Wright, S.: Numerical Optimization. Springer, Berlin (1999)

    MATH  Google Scholar 

  46. Ogata, K.: Discrete-Time Control Systems. Prentice-Hall, Englewood Cliffs (1997)

    Google Scholar 

  47. Ogata, K.: Modern Control Engineering. Prentice-Hall, Englewood Cliffs (2001)

    Google Scholar 

  48. Parrilo, P.: Semidefinite programming relaxations for semialgebraic problems. Math. Program. Ser. B 96(2), 293–320 (2003)

    Article  MATH  Google Scholar 

  49. Parrilo, P., Lall, S.: Semidefinite programming relaxations and algebraic optimization in control. Eur. J. Control 9(2–3), 307–321 (2003)

    Article  Google Scholar 

  50. Parrilo, P., Sturmfels, B.: Minimizing polynomial functions. In: Algorithmic and Quantitative Real Algebraic Geometry. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 60, pp. 83–99. AMS, Providence (2001)

    Google Scholar 

  51. Pedregal, P.: Parametrized Measures and Variational Principles. Birkhäuser, Basel (1997)

    MATH  Google Scholar 

  52. Pedregal, P.: Introduction to Optimization. Springer, Berlin (2003)

    Google Scholar 

  53. Prajna, S., Parrilo, P., Rantzer, A.: Nonlinear control synthesis by convex optimization. IEEE Trans. Autom. Control 49(2), 310–314 (2004)

    Article  Google Scholar 

  54. Roubíček, T., Valášek, M.: Optimal control of causal differential algebraic systems, J. Math. Anal. Appl. 269(2), Academic (2002)

  55. Roubíček, T.: Relaxation in Optimization Theory and Variational Calculus. De Gruyter, Berlin (1997)

    Google Scholar 

  56. Shohat, J.A., Tamarkin, J.D.: The Problem of Moments. Mathematical Surveys, vol. 1. AMS, Providence (1943)

    MATH  Google Scholar 

  57. Sussmann, H.J.: Geometry and optimal control. In: Baillieul, J., Willems, J.C. (eds.) Mathematical Control Theory. Springer, Berlin (1999)

    Google Scholar 

  58. Young, L.C.: Lectures on Calculus of Variations and Optimal Control Theory. Saunders (1969)

  59. Zabczyk, J.: Mathematical Control Theory: an Introduction. Birkhäuser, Basel (1992)

    MATH  Google Scholar 

  60. Zhou, K., Doyle, J.C., Glover, K.: Robust and Optimal Control. Prentice-Hall, Englewood Cliffs (1996)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to René Meziat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meziat, R., Patiño, D. & Pedregal, P. An alternative approach for non-linear optimal control problems based on the method of moments. Comput Optim Appl 38, 147–171 (2007). https://doi.org/10.1007/s10589-007-9032-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-007-9032-1

Keywords

Navigation