Skip to main content
Log in

Isomorphisms and several characterizations of Musielak-Orlicz-Hardy spaces associated with some Schrödinger operators

  • Published:
Czechoslovak Mathematical Journal Aims and scope Submit manuscript

Abstract

Let L ≔ −Δ + V be a Schrödinger operator on ℝn with n ⩾ 3 and V ⩾ 0 satisfying Δ−1 VL (ℝn). Assume that φ: ℝn × [0,∞) → [0,∞) is a function such that φ(x, ·) is an Orlicz function, φ(·, t) ∈ A (ℝn) (the class of uniformly Muckenhoupt weights). Let w be an L-harmonic function on ℝn with 0 < C 1wC 2, where C 1 and C 2 are positive constants. In this article, the author proves that the mapping \(H_{\phi ,L} (\mathbb{R}^n ) \mathrel\backepsilon f \mapsto wf \in H_\phi (\mathbb{R}^n )\) is an isomorphism from the Musielak-Orlicz-Hardy space associated with \(L,H_{\phi ,L} (\mathbb{R}^n )\), to the Musielak-Orlicz-Hardy space \(H_\phi (\mathbb{R}^n )\) under some assumptions on φ. As applications, the author further obtains the atomic and molecular characterizations of the space \(H_{\phi ,L} (\mathbb{R}^n )\) associated with w, and proves that the operator \({( - \Delta )^{ - 1/2}}{L^{1/2}}\) is an isomorphism of the spaces \(H_{\phi ,L} (\mathbb{R}^n )\) and \(H_\phi (\mathbb{R}^n )\). All these results are new even when φ(x, t) ≔ t p, for all x ∈ ℝn and t ∈ [0,∞), with p ∞ (n/(n + μ0), 1) and some μ0 ∈ (0, 1].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. A. Bonami, S. Grellier, L. D. Ky: Paraproducts and products of functions in BMO(ℝn) and H1(ℝn) through wavelets. J. Math. Pures Appl. (9) 97 (2012), 230–241. French summary.

    Article  MATH  MathSciNet  Google Scholar 

  2. A. Bonami, T. Iwaniec, P. Jones, M. Zinsmeister: On the product of functions in BMO and H 1. Ann. Inst. Fourier 57 (2007), 1405–1439.

    Article  MATH  MathSciNet  Google Scholar 

  3. T. A. Bui, J. Cao, L. D. Ky, D. Yang, S. Yang: Musielak-Orlicz-Hardy spaces associated with operators satisfying reinforced off-diagonal estimates. Anal. Geom. Metr. Spaces (electronic only) 1 (2013), 69–129.

    MATH  MathSciNet  Google Scholar 

  4. J. Cao, D.-C. Chang, D. Yang, S. Yang: Boundedness of second order Riesz transforms associated to Schrödinger operators on Musielak-Orlicz-Hardy spaces. Commun. Pure Appl. Anal. 13 (2014), 1435–1463.

    Article  MATH  MathSciNet  Google Scholar 

  5. X. T. Duong, L. Yan: Duality of Hardy and BMO spaces associated with operators with heat kernel bounds. J. Am. Math. Soc. 18 (2005), 943–973.

    Article  MATH  MathSciNet  Google Scholar 

  6. J. Dziubański, J. Zienkiewicz: A characterization of Hardy spaces associated with certain Schrödinger operators. Potential Anal. 41 (2014), 917–930.

    Article  MATH  MathSciNet  Google Scholar 

  7. J. Dziubański, J. Zienkiewicz: On isomorphisms of Hardy spaces associated with Schrödinger operators. J. Fourier Anal. Appl. 19 (2013), 447–456.

    Article  MATH  MathSciNet  Google Scholar 

  8. C. L. Fefferman, E. M. Stein: H p spaces of several variables. Acta Math. 129 (1972), 137–193.

    Article  MATH  MathSciNet  Google Scholar 

  9. J. García-Cuerva, J. L. Rubio de Francia: Weighted Norm Inequalities and Related Topics. North-Holland Mathematics Studies 116, North-Holland, Amsterdam, 1985.

    Book  MATH  Google Scholar 

  10. L. Grafakos: Modern Fourier Analysis. Graduate Texts in Mathematics 250, Springer, New York, 2009.

    MATH  Google Scholar 

  11. S. Hofmann, G. Lu, D. Mitrea, M. Mitrea, L. Yan: Hardy spaces associated to non-negative self-adjoint operators satisfying Davies-Gaffney estimates. Mem. Am. Math. Soc. 1007 (2011), 78 pages.

  12. S. Hofmann, S. Mayboroda: Hardy and BMO spaces associated to divergence form elliptic operators. Math. Ann. 344 (2009), 37–116.

    Article  MATH  MathSciNet  Google Scholar 

  13. S. Hofmann, S. Mayboroda, A. McIntosh: Second order elliptic operators with complex bounded measurable coefficients in L p, Sobolev and Hardy spaces. Ann. Sci. Éc. Norm. Supér. (4) 44 (2011), 723–800. French summary.

    MATH  MathSciNet  Google Scholar 

  14. S. Hou, D. Yang, S. Yang: Lusin area function and molecular characterizations of Musielak-Orlicz Hardy spaces and their applications. Commun. Contemp. Math. 15 (2013), Article ID1350029, 37 pages.

  15. S. Janson: Generalizations of Lipschitz spaces and an application to Hardy spaces and bounded mean oscillation. Duke Math. J. 47 (1980), 959–982.

    Article  MATH  MathSciNet  Google Scholar 

  16. R. Jiang, D. Yang: Orlicz-Hardy spaces associated with operators satisfying Davies-Gaffney estimates. Commun. Contemp. Math. 13 (2011), 331–373.

    Article  MATH  MathSciNet  Google Scholar 

  17. R. Jiang, D. Yang: New Orlicz-Hardy spaces associated with divergence form elliptic operators. J. Funct. Anal. 258 (2010), 1167–1224.

    Article  MATH  MathSciNet  Google Scholar 

  18. R. Jiang, D. Yang, D. Yang: Maximal function characterizations of Hardy spaces associated with magnetic Schrödinger operators. Forum Math. 24 (2012), 471–494.

    Article  MATH  MathSciNet  Google Scholar 

  19. L. D. Ky: Endpoint estimates for commutators of singular integrals related to Schrödinger operators. To appear in Rev. Mat. Iberoam.

  20. L. D. Ky: New Hardy spaces of Musielak-Orlicz type and boundedness of sublinear operators. Integral Equations Oper. Theory 78 (2014), 115–150.

    Article  MATH  MathSciNet  Google Scholar 

  21. L. D. Ky: Bilinear decompositions and commutators of singular integral operators. Trans. Am. Math. Soc. 365 (2013), 2931–2958.

    Article  MATH  Google Scholar 

  22. J. Musielak: Orlicz Spaces and Modular Spaces. Lecture Notes in Mathematics 1034, Springer, Berlin, 1983.

    MATH  Google Scholar 

  23. E. M. Ouhabaz: Analysis of Heat Equations on Domains. London Mathematical Society Monographs Series 31, Princeton University Press, Princeton, 2005.

    MATH  Google Scholar 

  24. M. M. Rao, Z. D. Ren: Theory of Orlicz Spaces. Pure and Applied Mathematics 146, Marcel Dekker, New York, 1991.

    MATH  Google Scholar 

  25. Y. A. Semenov: Stability of Lp-spectrum of generalized Schrödinger operators and equivalence of Green’s functions. Int. Math. Res. Not. 12 (1997), 573–593.

    Article  Google Scholar 

  26. B. Simon: Functional Integration and Quantum Physics. AMS Chelsea Publishing, Providence, 2005.

    MATH  Google Scholar 

  27. J.-O. Strömberg: Bounded mean oscillation with Orlicz norms and duality of Hardy spaces. Indiana Univ. Math. J. 28 (1979), 511–544.

    Article  MathSciNet  Google Scholar 

  28. J.-O. Strömberg, A. Torchinsky: Weighted Hardy Spaces. Lecture Notes in Mathematics 1381, Springer, Berlin, 1989.

    MATH  Google Scholar 

  29. L. Yan: Classes of Hardy spaces associated with operators, duality theorem and applications. Trans. Am. Math. Soc. 360 (2008), 4383–4408.

    Article  MATH  Google Scholar 

  30. D. Yang, S. Yang: Musielak-Orlicz Hardy spaces associated with operators and their applications. J. Geom. Anal. 24 (2014), 495–570.

    Article  MathSciNet  Google Scholar 

  31. D. Yang, S. Yang: Local Hardy spaces of Musielak-Orlicz type and their applications. Sci. China Math. 55 (2012), 1677–1720.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sibei Yang.

Additional information

The research is supported by the National Natural Science Foundation of China (Grant No. 11401276) and the Fundamental Research Funds for the Central Universities (Grant No. lzujbky-2014-18).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, S. Isomorphisms and several characterizations of Musielak-Orlicz-Hardy spaces associated with some Schrödinger operators. Czech Math J 65, 747–779 (2015). https://doi.org/10.1007/s10587-015-0206-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10587-015-0206-1

Keywords

MSC 2010

Navigation