Skip to main content
Log in

The weak McShane integral

  • Published:
Czechoslovak Mathematical Journal Aims and scope Submit manuscript

Abstract

We present a weaker version of the Fremlin generalized McShane integral (1995) for functions defined on a σ-finite outer regular quasi Radon measure space (S,Σ, T, µ) into a Banach space X and study its relation with the Pettis integral. In accordance with this new method of integration, the resulting integral can be expressed as a limit of McShane sums with respect to the weak topology. It is shown that a function f from S into X is weakly McShane integrable on each measurable subset of S if and only if it is Pettis and weakly McShane integrable on S. On the other hand, we prove that if an X-valued function is weakly McShane integrable on S, then it is Pettis integrable on each member of an increasing sequence (S l ) l⩾1 of measurable sets of finite measure with union S. For weakly sequentially complete spaces or for spaces that do not contain a copy of c 0, a weakly McShane integrable function on S is always Pettis integrable. A class of functions that are weakly McShane integrable on S but not Pettis integrable is included.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Aizpuru, F. J. Pérez-Fernández: Characterizations of series in Banach spaces. Acta Math. Univ. Comen., New Ser. 68 (1999), 337–344.

    MATH  Google Scholar 

  2. C. Castaing: Weak compactness and convergence in Bochner and Pettis integration. Vietnam J. Math. 24 (1996), 241–286.

    MathSciNet  Google Scholar 

  3. R. Deville, J. Rodríguez: Integration in Hilbert generated Banach spaces. Isr. J. Math. 177 (2010), 285–306.

    Article  MATH  Google Scholar 

  4. J. Diestel, J. J. Uhl Jr.: Vector Measures. Mathematical Surveys 15, AMS, Providence, R. I., 1977.

    MATH  Google Scholar 

  5. L. Di Piazza, D. Preiss: When do McShane and Pettis integrals coincide? Ill. J. Math. 47 (2003), 1177–1187.

    MATH  Google Scholar 

  6. M. Fabian, G. Godefroy, P. Hájek, V. Zizler: Hilbert-generated spaces. J. Funct. Anal. 200 (2003), 301–323.

    Article  MATH  MathSciNet  Google Scholar 

  7. D. H. Fremlin: The generalized McShane integral. Ill. J. Math. 39 (1995), 39–67.

    MATH  MathSciNet  Google Scholar 

  8. D. H. Fremlin: Measure Theory. Vol. 2. Broad Foundations. Corrected second printing of the 2001 original, Torres Fremlin, Colchester, 2003.

    MATH  Google Scholar 

  9. D. H. Fremlin: Measure theory. Vol. 4. Topological Measure Spaces. Part I, II. Corrected second printing of the 2003 original, Torres Fremlin, Colchester, 2006.

    MATH  Google Scholar 

  10. D. H. Fremlin, J. Mendoza: On the integration of vector-valued functions. Ill. J. Math. 38 (1994), 127–147.

    MATH  MathSciNet  Google Scholar 

  11. R. F. Geitz: Pettis integration. Proc. Am. Math. Soc. 82 (1981), 81–86.

    Article  MATH  MathSciNet  Google Scholar 

  12. R. A. Gordon: The McShane integral of Banach-valued functions. Ill. J. Math. 34 (1990), 557–567.

    MATH  Google Scholar 

  13. K. Musiał: Vitali and Lebesgue convergence theorems for Pettis integral in locally convex spaces. Atti Semin. Math. Fis. Univ. Modena 35 (1987), 159–165.

    MATH  Google Scholar 

  14. J. Rodríguez: On the equivalence of McShane and Pettis integrability in non-separable Banach spaces. J. Math. Anal. Appl. 341 (2008), 80–90.

    Article  MATH  MathSciNet  Google Scholar 

  15. M. Saadoune, R. Sayyad: From scalar McShane integrability to Pettis integrability. Real Anal. Exchange 38 (2012–2013), 445–466.

    MathSciNet  Google Scholar 

  16. Š. Schwabik, G. Ye: Topics in Banach Space Integration. Series in Real Analysis 10, World Scientific, Hackensack, 2005.

    Google Scholar 

  17. G. Ye, Š. Schwabik: The McShane and the weak McShane integrals of Banach spacevalued functions defined on ℝm. Math. Notes, Miskolc 2 (2001), 127–136.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed Saadoune.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saadoune, M., Sayyad, R. The weak McShane integral. Czech Math J 64, 387–418 (2014). https://doi.org/10.1007/s10587-014-0108-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10587-014-0108-7

Keywords

MSC 2010

Navigation