Skip to main content
Log in

Towards a secure and dependable IoT data monetization using blockchain and fog computing

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

Massive internet of things (IoT) data generated by IoT edge devices are shaping the data economy. Monetizing the stream of IoT data has enabled the development of IoT data trading systems, which allow individuals to sell and exchange data. This article presents a blockchain-based system for IoT data trading using fog computing. We propose crowdsourcing fog nodes on the edge network to communicate and collect data from IoT edge device owners. This paper focuses on developing a secure and dependable blockchain-based system that allows data providers and consumers to engage in data trading process. Through experimental results, we evaluate the performance of the proposed model with respect to transaction throughput, latency, and resource consumption metrics under varied scenarios and parameters using Hyperledger blockchain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Mansouri, Y., Babar, M.A.: A review of edge computing: features and resource virtualization. J. Parallel Distrib. Comput. 150, 155–183 (2021)

    Article  Google Scholar 

  2. Khezr, S., Yassine, A., Benlamri, R., Hossain, M.S.: An edge intelligent blockchain-based reputation system for IIoT data ecosystem. IEEE Trans. Ind. Inform. (2022). https://doi.org/10.1109/TII.2022.3174065

    Article  Google Scholar 

  3. O’Dea, S.: Data volume of internet of things (IoT) connections worldwide in 2019 and 2025. https://www.statista.com/statistics/1017863/worldwide-iot-connected-devices-data-size/, 2020. accessed 01 Dec 2022

  4. Cisco Global Cloud Index. Forecast and methodology, 2016–2021 white paper. Updated: February, 1 (2018)

  5. Salek Ali, M., Vecchio, M., Antonelli, F.: A blockchain-based framework for IoT data monetization services. Comput. J. 64(2), 195–210 (2021)

    Article  Google Scholar 

  6. Yassine, A., Shirmohammadi, S.: Privacy and the market for private data: a negotiation model to capitalize on private data. In: 2008 IEEE/ACS international conference on computer systems and applications, pp. 669–678. IEEE (2008)

  7. Truong, H.T.T., Almeida, M., Karame, G., Soriente, C.: Towards secure and decentralized sharing of IoT data. In: 2019 IEEE international conference on blockchain (blockchain), pp. 176–183. IEEE (2019)

  8. Haghi Kashani, M., Rahmani, A.M., Jafari Navimipour, N.: Quality of service-aware approaches in fog computing. Int. J. Commun. Syst. 33(8), e4340 (2020)

    Article  Google Scholar 

  9. Caiza, G., Saeteros, M., Oñate, W., Garcia, M.V.: Fog computing at industrial level, architecture, latency, energy, and security: a review. Heliyon 6(4), e03706 (2020)

    Article  Google Scholar 

  10. Lakhan, A., Mohammed, M.A., Rashid, A.N., Kadry, S., Panityakul, T., Abdulkareem, K.H., Thinnukool, O.: Smart-contract aware Ethereum and client-fog-cloud healthcare system. Sensors 21(12), 4093 (2021)

    Article  Google Scholar 

  11. Lakhan, A., Mohammed, M.A., Kozlov, S., Rodrigues, J.J.: Mobile-fog-cloud assisted deep reinforcement learning and blockchain-enable IOMT system for healthcare workflows. Trans. Emerg. Telecommun. Technol. (2021). https://doi.org/10.1002/ett.4363

    Article  Google Scholar 

  12. Gong, J., Navimipour, N.J.: An in-depth and systematic literature review on the blockchain-based approaches for cloud computing. Clust. Comput. 25, 1–18 (2021)

    Google Scholar 

  13. Zarrin, J., Wen Phang, H., Babu Saheer, L., Zarrin, B.: Blockchain for decentralization of internet: prospects, trends, and challenges. Clust. Comput. 24, 1–26 (2021)

    Article  Google Scholar 

  14. Khezr, S., Benlamri, R., Yassine, A.: Blockchain-based model for sharing activities of daily living in healthcare applications. In: 2020 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech), pp. 627–633. IEEE (2020)

  15. Lopez, D., Farooq, B.: A multi-layered blockchain framework for smart mobility data-markets. Transp. Res. Part C 111, 588–615 (2020)

    Article  Google Scholar 

  16. Li, J., Wu, J., Jiang, G., Srikanthan, T.: Blockchain-based public auditing for big data in cloud storage. Inf. Process. Manag. 57(6), 102382 (2020)

    Article  Google Scholar 

  17. Jiao, Y., Wang, P., Niyato, D., Suankaewmanee, K.: Auction mechanisms in cloud/fog computing resource allocation for public blockchain networks. IEEE Trans. Parallel Distrib. Syst. 30(9), 1975–1989 (2019)

    Article  Google Scholar 

  18. Li, Y., Li, L., Zhao, Y., Guizani, N., Yu, Y., Du, X.: Toward decentralized fair data trading based on blockchain. IEEE Netw. 35(1), 304–10 (2020)

    Article  Google Scholar 

  19. Liu, K., Qiu, X., Chen, W., Chen, X., Zheng, Z.: Optimal pricing mechanism for data market in blockchain-enhanced internet of things. IEEE Internet Things J. 6(6), 9748–9761 (2019)

    Article  Google Scholar 

  20. Sheng, D., Xiao, M., Liu, A., Zou, X., An, B., Zhang, S.: Cpchain: A copyright-preserving crowdsourcing data trading framework based on blockchain. In: 2020 29th international conference on computer communications and networks (ICCCN), pp. 1–9. IEEE (2020)

  21. Xiong, W., Xiong, L.: Smart contract based data trading mode using blockchain and machine learning. IEEE Access 7, 102331–102344 (2019)

    Article  Google Scholar 

  22. Chen, C., Wu, J., Lin, H., Chen, W., Zheng, Z.: A secure and efficient blockchain-based data trading approach for internet of vehicles. IEEE Trans. Veh. Technol. 68(9), 9110–9121 (2019)

    Article  Google Scholar 

  23. Jamil, F., Iqbal, N., Ahmad, S., Kim, D., et al.: Peer-to-peer energy trading mechanism based on blockchain and machine learning for sustainable electrical power supply in smart grid. IEEE Access 9, 39193–39217 (2021)

    Article  Google Scholar 

  24. Hassija, V., Chamola, V., Garg, S., Krishna, D.N., Kaddoum, G., Jayakody, D.N.: A blockchain-based framework for lightweight data sharing and energy trading in v2g network. IEEE Trans. Veh. Technol. 69(6), 5799–812 (2020)

    Article  Google Scholar 

  25. Esmat, A., de Vos, M., Ghiassi-Farrokhfal, Y., Palensky, P., Epema, D.: A novel decentralized platform for peer-to-peer energy trading market with blockchain technology. Appl. Energy 282, 116123 (2021)

    Article  Google Scholar 

  26. Green, M., Miers, I.: Bolt: Anonymous payment channels for decentralized currencies. In: Proceedings of the 2017 ACM SIGSAC conference on computer and communications security, pp. 473–489 (2017)

  27. Sasson, E.B., Chiesa, A., Garman, C., Green, M., Miers, I., Tromer, E. and Virza, M., 2014, May. Zerocash: Decentralized anonymous payments from bitcoin. In 2014 IEEE symposium on security and privacy (pp. 459-474). IEEE.

  28. Parno, B., Howell, J., Gentry, C., Raykova, M.: Pinocchio: Nearly practical verifiable computation. In: 2013 IEEE symposium on security and privacy, pp. 238–252. IEEE (2013)

  29. Zhang, Y., Deng, R.H., Shu, J., Yang, K., Zheng, D.: Tkse: trustworthy keyword search over encrypted data with two-side verifiability via blockchain. IEEE Access 6, 31077–31087 (2018)

    Article  Google Scholar 

  30. Blummer, T., Sean, M., Cachin, C.: An introduction to hyperledger. Hyperledger Under Linux Found. White Paper (2018)

  31. Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and succinct nizks without pcps. In: Annual international conference on the theory and applications of cryptographic techniques, pp. 626–645. Springer (2013)

  32. Liu, D., Ni, J., Huang, C., Lin, X., Shen, X.S.: Secure and efficient distributed network provenance for IoT: a blockchain-based approach. IEEE Internet Things J. 7(8), 7564–7574 (2020)

    Article  Google Scholar 

  33. Graf, M., Küsters, R., Rausch, D.: Accountability in a permissioned blockchain: formal analysis of hyperledger fabric. In: 2020 IEEE European Symposium on Security and Privacy (EuroS &P), pp. 236–255. IEEE (2020)

  34. Charles, P.W.D.: A blockchain benchmark framework. (2019). accessed 26 Apr 2021

  35. Kelly, J., Knottenbelt, W.: The UK-dale dataset, domestic appliance-level electricity demand and whole-house demand from five UK homes. Sci. Data 2, 150007 (2015)

    Article  Google Scholar 

  36. Hyperledger Performance, Scale Working Group, et al. Hyperledger blockchain performance metrics. Hyperledger. org, pp. 1–17 (2018)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdulsalam Yassine.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khezr, S., Yassine, A. & Benlamri, R. Towards a secure and dependable IoT data monetization using blockchain and fog computing. Cluster Comput 26, 1551–1564 (2023). https://doi.org/10.1007/s10586-022-03669-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-022-03669-1

Keywords

Navigation