Skip to main content
Log in

Data replica placement approaches in fog computing: a review

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

Recently, we are witnessing an enormous burst of data due to the ever-increasing number of Internet of Things (IoT) devices. The traditional cloud computing paradigm has failed to scale; to be specific, its latency and bandwidth utilization are remarkably increased and consequently, Quality of Service (QoS) is decreased. On the other hand, the data management scope in fog computing require much more considerations in terms of performance and scalability. This is because of deploying IoT applications over fog nodes considering their resource-limited and heterogeneity. However, to the best of our knowledge, there is not any literature review that systematically categorizes these issues. In this paper, we have presented a classification of data replica placement approaches considering four main categories: framework-based, graph-based, heuristic-based, and meta-heuristic-based algorithms. To sum up, the primary contribution of this study is as follows: studying articles on data replica placement in fog computing, as well as presenting their strengths and weaknesses, providing a comprehensive systematic review of current approaches and categorizing them comprehensively, discussing research challenges, and future works to improve computing and evaluation mechanisms in the fog computing environment. This paper generally provides a classification, briefly explains the reviewed techniques, and then compares these methods in the end.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

Abbreviations

ACO:

Ant colony algorithm

ACOv:

Optimized ant colony algorithm

CCWN:

Centrality complex weighted networks

DDS:

Distributed data stores

DDoS:

Distributed denial of services

DHT:

Distributed hash table

DNS:

Domain name system

D-Rep:

Distributed—replica placement

DSEGA:

Data-intensive service edge genetic algorithm

DRCA:

Dynamic replica creation algorithm

DRC-AH:

Data replica creation based on access heat

DRC-GM:

Dynamic replica creation algorithm granular and comprehensive

DRSA:

Data replica scheduling algorithm

DRS-NSC:

Data replica selection based on node service capability

DRC-DS:

Dynamic replica creation based on domain structure

FDA:

Fog data analytics

FLP:

Facility location problem

GA:

Genetic algorithm

GAP:

Generalized assignment problem

HDFS:

Hadoop distributed file system

IoT:

Internet of things

IP:

Integer programming

IoV:

Internet of vehicles

MDP:

Markov decision-making process

MILP:

Mixed-integer linear programming

NFV:

Network function virtualization

PoP:

Point of presence

QoS:

Quality of service

FNSG:

Fast non-dominated sorting genetic

RP-FNSG:

Fast non-dominated sorting genetic replica placement

SA:

Simulated annealing

SDN:

Software-defined networking

SLR:

Systematic literature review

TQ:

Technical questions

UAV:

Unmanned aerial vehicles

VM:

Virtual machine

W2H:

Web to home

WIEBRS:

Wireless IoT edge-enabled block replica strategy

YCSB:

Yahoo cloud serving benchmark

References

  1. Guo, J., Li, C., Luo, Y.: Fast replica recovery and adaptive consistency preservation for edge cloud system. Soft Comput. (2020). https://doi.org/10.1007/s00500-020-04847-2

    Article  Google Scholar 

  2. Nikoui, T.S., Rahmani, A.M., Tabarsaied, H.: Data management in fog computing. In: Fog and Edge Computing, Hoboken: Wiley, 2019, pp. 171–190

  3. Tabet, K., Mokadem, R., Laouar, M.R., Eom, S.: Data replication in cloud systems. Int. J. Inf. Syst. Soc. Chang. 8(3), 17–33 (2017). https://doi.org/10.4018/IJISSC.2017070102

    Article  Google Scholar 

  4. Jamali, M.A.J., Bahrami, B., Heidari, A., Allahverdizadeh, P., Norouzi, F.: IoT architecture BT. Towards Internet Things 21, 9–31 (2020)

    Google Scholar 

  5. Rani, R., Kumar, N., Khurana, M., Kumar, A., Barnawi, A.: Storage as a service in Fog computing: a systematic review. J. Syst. Archit. 116, 102033 (2020). https://doi.org/10.1016/j.sysarc.2021.102033

    Article  Google Scholar 

  6. Fersi, G.: Fog Computing and Internet of Things in One Building Block: A Survey and an Overview of Interacting Technologies, vol. 4. Springer, New York (2021)

    Google Scholar 

  7. Heidari, A., Navimipour, N.J.: A new SLA-aware method for discovering the cloud services using an improved nature-inspired optimization algorithm. PeerJ Comput. Sci. 7, 1–21 (2021). https://doi.org/10.7717/PEERJ-CS.539

    Article  Google Scholar 

  8. Shakarami, A., Ghobaei-Arani, M., Shahidinejad, A., Masdari, M., Shakarami, H.: Data replication schemes in cloud computing: a survey. Springer, New York (2021)

    Book  Google Scholar 

  9. Qin, Y.: When things matter: a survey on data-centric Internet of Things. J. Netw. Comput. Appl. 64, 137–153 (2016)

    Article  Google Scholar 

  10. Buyya, R., Dastjerdi, A.: Fog computing: helping the internet of things realize its potential. Computer (Long. Beach. Calif) 49(8), 112–116 (2016)

    Google Scholar 

  11. Aberer, K., Sathe, S., Papaioannou, T.G., Jeung, H.: A survey of model-based sensor data acquisition and management. In: Aggarwal, C.C. (ed.) Managing and Mining Sensor Data. Springer, Boston (2013)

    Google Scholar 

  12. Azad, K.M., Pramanik, I., Lau, R., Demirkan, H.: Smart health : Big data enabled health paradigm within smart cities. Expert Syst. Appl. 87, 370–373 (2017)

    Article  Google Scholar 

  13. Noel, T., Karkouch, A., Mousannif, H., Al-Moatassime, H.: Data quality in Internet of Things: a state-of-the-art survey. J. Netw. Comput. Appl. 73, 57–81 (2016)

    Article  Google Scholar 

  14. Sharma, S.K., Wang, X.: Live data analytics with collaborative edge and cloud processing in wireless IoT networks. IEEE Access 5, 4621–4635 (2017)

    Article  Google Scholar 

  15. Naas, M.I., Parvedy, P.R., Boukhobza, J., Lemarchand, L.: IFogStor: an IoT data placement strategy for fog infrastructure. In: 2017 IEEE 1st International Conference on Fog and Edge Computing. ICFEC 2017, pp. 97–104, 2017, https://doi.org/10.1109/ICFEC.2017.15.

  16. da Silva, D.M.A., Asamooning, G., Orrillo, H., Sofia, R. C., Mendes, P.M.: An analysis of fog computing data placement algorithms. arXiv Comput. Sci., (2020), arXiv:2005.11847v1.

  17. Karatas, F., Korpeoglu, I.: Fog-based data distribution Service (F-DAD) for Internet of Things (IoT) applications. Futur. Gener. Comput. Syst. 93, 156–169 (2019). https://doi.org/10.1016/j.future.2018.10.039

    Article  Google Scholar 

  18. Milani, B.A., Navimipour, N.J.: A comprehensive review of the data replication techniques in the cloud environments: major trends and future directions. J. Netw. Comput. Appl. 64, 229–238 (2016). https://doi.org/10.1016/j.jnca.2016.02.005

    Article  Google Scholar 

  19. Moysiadis, V., Sarigiannidis, P., Moscholios, I.: Towards distributed data management in fog computing. Wirel. Commun. Mob. Comput. (2018). https://doi.org/10.1155/2018/7597686

    Article  Google Scholar 

  20. Mansouri, N., Javidi, M.M.: A review of data replication based on meta-heuristics approach in cloud computing and data grid. Soft Comput. (2020). https://doi.org/10.1007/s00500-020-04802-1

    Article  Google Scholar 

  21. Mazumdar, S., Seybold, D., Kritikos, K., Verginadis, Y.: A survey on data storage and placement methodologies for Cloud-Big Data ecosystem. J. Big Data 6(1), 15 (2019). https://doi.org/10.1186/s40537-019-0178-3

    Article  Google Scholar 

  22. Sadri, A.A., Rahmani, A.M., Saberikamarposhti, M., Hosseinzadeh, M.: Fog data management: a vision, challenges, and future directions. J. Netw. Comput. Appl. 174, 102882 (2021). https://doi.org/10.1016/j.jnca.2020.102882

    Article  Google Scholar 

  23. Islam, M.S.U., Kumar, A., Hu, Y.-C.: Context-aware scheduling in Fog computing: a survey, taxonomy, challenges and future directions”. J. Netw. Comput. Appl. 180(1), 103008 (2021). https://doi.org/10.1016/j.jnca.2021.103008

    Article  Google Scholar 

  24. Heidari, A., Navimipour, N.J.: Service discovery mechanisms in cloud computing: a comprehensive and systematic literature review. Kybernetes (2021). https://doi.org/10.1108/K-12-2020-0909

    Article  Google Scholar 

  25. Hießl, T., Hochreiner, C., Schulte, S.: Towards a framework for data stream processing in the fog. Inform. Spektrum 42(4), 256–265 (2019). https://doi.org/10.1007/s00287-019-01192-z

    Article  Google Scholar 

  26. Naas, M.I., Lemarchand, L., Raipin, P., Boukhobza, J.: IoT data replication and consistency management in fog computing. J. Grid Comput. 19(3), 1–25 (2021). https://doi.org/10.1007/s10723-021-09571-1

    Article  Google Scholar 

  27. Huang, T., Lin, W., Li, Y., He, L.G., Peng, S.L.: A latency-aware multiple data replicas placement strategy for fog computing. J. Signal Process. Syst. 91(10), 1191–1204 (2019). https://doi.org/10.1007/s11265-019-1444-5

    Article  Google Scholar 

  28. Li, C., Tang, J., Luo, Y.: Scalable replica selection based on node service capability for improving data access performance in edge computing environment. J. Supercomput. 75(11), 7209–7243 (2019)

    Article  Google Scholar 

  29. Saranya, N., Geetha, K., Rajan, C.: Data replication in mobile edge computing systems to reduce latency in internet of things. Wirel. Pers. Commun. 112(4), 2643–2662 (2020). https://doi.org/10.1007/s11277-020-07168-7

    Article  Google Scholar 

  30. Qureshi, N.M.F., et al.: An aggregate MapReduce data block placement strategy for wireless IoT edge nodes in smart grid. Wirel. Pers. Commun. 106(4), 2225–2236 (2019). https://doi.org/10.1007/s11277-018-5936-6

    Article  Google Scholar 

  31. Chen, Y., Deng, S., Ma, H., Yin, J.: Deploying data-intensive applications with multiple services components on edge. Mob. Netw. Appl. 25(2), 426–441 (2020). https://doi.org/10.1007/s11036-019-01245-3

    Article  Google Scholar 

  32. Vales, R., Moura, J., Marinheiro, R.: Energy-aware and adaptive fog storage mechanism with data replication ruled by spatio-temporal content popularity. J. Netw. Comput. Appl. 135(351), 84–96 (2019). https://doi.org/10.1016/j.jnca.2019.03.001

    Article  Google Scholar 

  33. Li, C., Bai, J., Tang, J.H.: Joint optimization of data placement and scheduling for improving user experience in edge computing. J. Parall. Distrib. Comput. 125, 93–105 (2019). https://doi.org/10.1016/j.jpdc.2018.11.006

    Article  Google Scholar 

  34. Li, C., Wang, Y.P., Tang, H., Luo, Y.: Dynamic multi-objective optimized replica placement and migration strategies for SaaS applications in edge cloud. Futur. Gener. Comput. Syst. 100, 921–937 (2019). https://doi.org/10.1016/j.future.2019.05.003

    Article  Google Scholar 

  35. Li, C., Wang, Y.P., Chen, Y., Luo, Y.: Energy-efficient fault-tolerant replica management policy with deadline and budget constraints in edge-cloud environment. J. Netw. Comput. Appl. 143(152–166), 2019 (2018). https://doi.org/10.1016/j.jnca.2019.04.018

    Article  Google Scholar 

  36. Shao, Y., Li, C., Tang, H.: A data replica placement strategy for IoT workflows in collaborative edge and cloud environments. Comput. Netw. 148, 46–59 (2019). https://doi.org/10.1016/j.comnet.2018.10.017

    Article  Google Scholar 

  37. Li, C., Wang, Y.P., Tang, H., Zhang, Y., Xin, Y., Luo, Y.: Flexible replica placement for enhancing the availability in edge computing environment. Comput. Commun. 146, 1–14 (2019). https://doi.org/10.1016/j.comcom.2019.07.013

    Article  Google Scholar 

  38. Shao, Y., Li, C., Fu, Z., Jia, L., Luo, Y.: Cost-effective replication management and scheduling in edge computing. J. Netw. Comput. Appl. 129, 46–61 (2019). https://doi.org/10.1016/j.jnca.2019.01.001

    Article  Google Scholar 

  39. Li, C., Song, M., Zhang, M., Luo, Y.: Effective replica management for improving reliability and availability in edge-cloud computing environment. J. Parall. Distrib. Comput. 143, 107–128 (2020). https://doi.org/10.1016/j.jpdc.2020.04.012

    Article  Google Scholar 

  40. Monga, S.K., Ramachandra, S.K., Simmhan, Y.: ElfStore: A resilient data storage service for federated edge and fog resources. 2019 IEEE International Conference on Services Computing, pp. 336–345, 2019, https://doi.org/10.1109/ICWS.2019.00062.

  41. Mayer, R., Gupta, H., Saurez, E., Ramachandran, U.: FogStore: toward a distributed data store for fog computing. 2017 IEEE Fog World Congr. FWC 2017, pp. 1–6, 2018, https://doi.org/10.1109/FWC.2017.8368524

  42. Breitbach, M., Schafer, D., Edinger, J., Becker, C.: Context-aware data and task placement in edge computing environments. In 2019 IEEE International Conference on Pervasive Computing and Communications (PerCom, Mar. 2019, pp. 1–10, https://doi.org/10.1109/PERCOM.2019.8767386.

  43. Confais, B., Parrein, B., Lebre, A.: A tree-based approach to locate object replicas in a fog storage infrastructure. 2018 IEEE Global Communications Conference, pp. 1–6, (2018), https://doi.org/10.1109/GLOCOM.2018.8647470.

  44. Lera, I., Guerrero, C., Juiz, C.: Comparing centrality indices for network usage optimization of data placement policies in fog devices. 2018 3rd International Conference on Fog and Mobile Edge Computing FMEC 2018, pp. 115–122, 2018, https://doi.org/10.1109/FMEC.2018.8364053.

  45. Confais, B., Parrein, B., Lebre, A.: Data location management protocol for object stores in a fog computing infrastructure. IEEE Trans. Netw. Serv. Manag. 16(4), 1624–1637 (2019). https://doi.org/10.1109/TNSM.2019.2929823

    Article  Google Scholar 

  46. Aral, A., Ovatman, T.: A decentralized replica placement algorithm for edge computing. IEEE Trans. Netw. Serv. Manag. 15(2), 516–529 (2018). https://doi.org/10.1109/TNSM.2017.2788945

    Article  Google Scholar 

  47. Hasenburg, J., Grambow, M., Bermbach, D.: Towards a replication service for data-intensive fog applications. In: Proceedings of the 35th Annual ACM Symposium on Applied Computing, 2020, pp. 267–270, https://doi.org/10.1145/3341105.3374060.

  48. Naas, M.I., Lemarchand, L., Boukhobza, J., Raipin, P.: A graph partitioning-based heuristic for runtime IoT data placement strategies in a fog infrastructure. In: Proceedings of the Symposium on Applied Computing, pp. 767–774, 2018, https://doi.org/10.1145/3167132.3167217.

  49. Hasenburg, J., Grambow, M., Bermbach, D.: FBase: a replication service for data-intensive fog applications. In: Proceedings of the 35th Annual ACM Symposium on Applied Computing pp. 267–270, 2019, https://doi.org/10.1145/3341105.3374060.

  50. Gupta, H., Xu, Z., Ramachandran, U.: DataFog: towards a holistic data management platform for the IoT age at the network edge. USENIX Work. Hot Top. Edge Comput. HotEdge 2018, co-located with USENIX ATC 2018, 2018.

  51. Guerrero, C., Lera, I., Juiz, C.: Optimization policy for file replica placement in fog domains. Concurr. Comput. 9(1–20), 2019 (2018). https://doi.org/10.1002/cpe.5343

    Article  Google Scholar 

  52. Taghizadeh, J., Ghobaei-Arani, M. & Shahidinejad, A. An efficient data replica placement mechanism using biogeography-based optimization technique in the fog computing environment. J Ambient Intell Human Comput (2021). https://doi.org/10.1007/s12652-021-03495-0

Download references

Funding

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

ET, AS, MGA conducted this research. ET: Methodology, Software, Validation, Writing original draft. AS: Conceptualization, Supervision, Writing review & editing, Formal analysis, Project administration. MGA: Investigation, Resources, Data curation, Visualization.

Corresponding author

Correspondence to Mostafa Ghobaei-Arani.

Ethics declarations

Conflict of interest

We certify that there is no actual or potential conflict of interest in relation to this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Torabi, E., Ghobaei-Arani, M. & Shahidinejad, A. Data replica placement approaches in fog computing: a review. Cluster Comput 25, 3561–3589 (2022). https://doi.org/10.1007/s10586-022-03575-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-022-03575-6

Keywords

Navigation