Skip to main content
Log in

A novel controller placement algorithm based on network portioning concept and a hybrid discrete optimization algorithm for multi-controller software-defined networks

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

Software defined network (SDN) has shown significant advantages in numerous real-life aspects with separating the control plane from the data plane that provides programmable management for networks. However, with the increase in the network size, a single controller of SDN imposes considerable limitations on various features. Therefore, in networks with immense scalability, multiple controllers are essential. Specifying the optimal number of controllers and their deployment place is known as the controller placement problem (CPP), which affects the network's performance. In the present paper, a novel controller placement algorithm has been introduced using the advantages of nature-inspired optimization algorithms and network portioning. Firstly, the Manta Ray Foraging Optimization (MRFO) and Salp Swarm Algorithm (SSA) have been discretized to solve CPP. Three new operators comprising a two-point swap, random insert, and half points crossover operators were introduced to discretized the algorithms. Afterward, the resulting discrete MRFO and SSA algorithms were hybridized in a promoting manner. Next, the proposed discrete algorithm has been evaluated on six well-known software-defined networks with a different number of controllers. In addition, the networks have been chosen from various sizes to evaluate the scalability of the proposed algorithm. The proposed algorithm has been compared with several other state-of-the-art algorithms regarding network propagation delay and convergence rate in experiments. The findings indicated the effectiveness of the contributions and the superiority of the proposed algorithm over the competitor algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41
Fig. 42
Fig. 43

Similar content being viewed by others

References

  1. Al-Qerem, A., et al.: IoT transaction processing through cooperative concurrency control on fog–cloud computing environment. Soft. Comput. 24(8), 5695–5711 (2020)

    Google Scholar 

  2. Masdari, M., et al.: Bio-inspired virtual machine placement schemes in cloud computing environment: taxonomy, review, and future research directions. Cluster Comput. (2019). https://doi.org/10.1007/s10586-019-03026-9

    Article  Google Scholar 

  3. Masdari, M., Khoshnevis, A.: A survey and classification of the workload forecasting methods in cloud computing. Cluster Comput. 23, 2399–2424 (2019)

    Google Scholar 

  4. Al-Sharif, Z.A., et al.: Live forensics of software attacks on cyber–physical systems. Future Gener. Comput. Syst. 108, 1217–1229 (2020)

    Google Scholar 

  5. Iqbal, S., et al.: Minimize the delays in software defined network switch controller communication. Concurr. Comput.: Pract. Exp. (2020). https://doi.org/10.1002/cpe.5940

    Article  Google Scholar 

  6. Bhushan, K., Gupta, B.B.: Distributed denial of service (DDoS) attack mitigation in software defined network (SDN)-based cloud computing environment. J. Ambient Intell. Humaniz. Comput. 10(5), 1985–1997 (2019)

    Google Scholar 

  7. Hu, F., Hao, Q., Bao, K.: A survey on software-defined network and openflow: from concept to implementation. IEEE Commun. Surv. Tutor. 16(4), 2181–2206 (2014)

    Google Scholar 

  8. Shaghaghi, A., et al.: Software-Defined Network (SDN) Data plane security: issues, solutions, and future directions. In: Handbook of Computer Networks and Cyber Security, pp. 341–387. Springer, Cham (2020)

    Google Scholar 

  9. Singh, S., Jha, R.K.: A survey on software defined networking: architecture for next generation network. J. Netw. Syst. Manag. 25(2), 321–374 (2017)

    Google Scholar 

  10. Rawat, D.B., Reddy, S.R.: Software defined networking architecture, security and energy efficiency: a survey. IEEE Commun. Surv. Tutor. 19(1), 325–346 (2016)

    Google Scholar 

  11. Moradi, A., Abdi Seyedkolaei, A., Hosseini, S.A.: Controller placement in software defined network using iterated local search. J. AI Data Min. 8(1), 55–65 (2020)

    Google Scholar 

  12. Abuarqoub, A.: A review of the control plane scalability approaches in software defined networking. Future Internet 12(3), 49 (2020)

    Google Scholar 

  13. El Kamel, A., Youssef, H.: Improving switch-to-controller assignment with load balancing in multi-controller software defined WAN (SD-WAN). J. Netw. Syst. Manag. (2020). https://doi.org/10.1007/s10922-020-09523-2

    Article  Google Scholar 

  14. Jalili, A., Keshtgari, M., Akbari, R.: A new framework for reliable control placement in software-defined networks based on multi-criteria clustering approach. Soft Comput. 24(4), 2897–2916 (2020)

    Google Scholar 

  15. Singh, A.K., et al.: Heuristic approaches for the reliable SDN controller placement problem. Trans. Emerg. Telecommun. Technol. 31(2), e3761 (2020)

    Google Scholar 

  16. Fan, Y., Ouyang, T., Yuan, X.: Controller placements for improving flow set-up reliability of software-defined networks. In: Urban Intelligence and Applications, pp. 3–13. Springer, Cham (2020)

    Google Scholar 

  17. Sminesh, C., Kanaga, E.G.M., Sreejish, A.: A multi-controller placement strategy in software defined networks using affinity propagation. Int. J. Internet Technol. Secured Trans. 10(1–2), 229–253 (2020)

    Google Scholar 

  18. Killi, B.P.R., Rao, S.V.: Poly-stable matching based scalable controller placement with balancingconstraints in SDN. Comput. Commun. (2020). https://doi.org/10.1016/j.comcom.2020.02.053

    Article  Google Scholar 

  19. Sminesh, C., Grace Mary Kanaga, E., Sreejish, A.: Augmented affinity propagation-based networkpartitioning for multiple controllers placement in software defined networks. J. Comput. Theor. Nanosci. 17(1), 228–233 (2020)

    Google Scholar 

  20. ul Huque, M.T.I., Jourjon, G., Gramoli, V.: Revisiting the controller placement problem. In: 2015 IEEE 40th Conference on Local Computer Networks (LCN). IEEE (2015)

  21. Schütz, G., Martins, J.: A comprehensive approach for optimizing controller placement in Software-Defined Networks. Comput. Commun. (2020). https://doi.org/10.1016/j.comcom.2020.05.008

    Article  Google Scholar 

  22. Heller, B., Sherwood, R., McKeown, N.: The controller placement problem. ACM SIGCOMM Comput. Commun. Rev. 42(4), 473–478 (2012)

    Google Scholar 

  23. Muluye, W.: A review on software-defined networking distributed controllers. Int. J. Eng. Comput. Sci. 9(2), 24953–24961 (2020)

    Google Scholar 

  24. Yao, Z., Yan, Z.: A trust management framework for software-defined network applications. Concurr. Comput.: Pract. Exp. 32(16), e4518 (2020)

    Google Scholar 

  25. Barshandeh, S., Piri, F., Sangani, S.R.: HMPA: an innovative hybrid multi-population algorithm based onartificial ecosystem-based and Harris Hawks optimization algorithms for engineering problems. Eng. Comput. (2020). https://doi.org/10.1007/s00366-020-01120-w

    Article  Google Scholar 

  26. Barshandeh, S., Haghzadeh, M.: A new hybrid chaotic atom search optimization based on tree-seedalgorithm and Levy flight for solving optimization problems. Eng. Comput. (2020). https://doi.org/10.1007/s00366-020-00994-0

    Article  Google Scholar 

  27. Masdari, M., Barshande, S., Ozdemir, S.: CDABC: chaotic discrete artificial bee colony algorithm for multi-level clustering in large-scale WSNs. J. Supercomput. 75(11), 7174–7208 (2019)

    Google Scholar 

  28. Masdari, M., Barshandeh, S.: Discrete teaching–learning-based optimization algorithm for clustering in wireless sensor networks. J. Ambient Intell. Humaniz. Comput. (2020). https://doi.org/10.1007/s12652-020-01902-6

    Article  Google Scholar 

  29. Faramarzi, A., et al.: Equilibrium optimizer: a novel optimization algorithm. Knowl.-Based Syst. 191, 105190 (2020)

    Google Scholar 

  30. Hayyolalam, V., Kazem, A.A.P.: Black widow optimization algorithm: a novel meta-heuristic approach for solving engineering optimization problems. Eng. Appl. Artif. Intell. 87, 103249 (2020)

    Google Scholar 

  31. Dhiman, G., Kumar, V.: Seagull optimization algorithm: theory and its applications for large-scale industrial engineering problems. Knowl.-Based Syst. 165, 169–196 (2019)

    Google Scholar 

  32. Brammya, G., et al.: Deer hunting optimization algorithm: a new nature-inspired meta-heuristic paradigm. Comput. J. (2019). https://doi.org/10.1093/comjnl/bxy133

    Article  Google Scholar 

  33. Kaveh, A., Zaerreza, A.: Shuffled shepherd optimization method: a new meta-heuristic algorithm. Eng. Comput. (2020). https://doi.org/10.1108/EC-10-2019-0481

    Article  Google Scholar 

  34. Sulaiman, M.H., et al.: Barnacles Mating Optimizer: a new bio-inspired algorithm for solving engineering optimization problems. Eng. Appl. Artif. Intell. 87, 103330 (2020)

    Google Scholar 

  35. Mohanty, S., et al.: A simulated annealing strategy for reliable controller placement in software defined networks. In: 2020 7th International Conference on Signal Processing and Integrated Networks (SPIN). IEEE (2020)

  36. Abuabara, R.I., et al.: Cost-effective Tabu search algorithm for solving the controller placement problem inSDN. In: Pattern Recognition Applications in Engineering, pp. 109–130. IGI Global, Hershey (2020)

    Google Scholar 

  37. Griffin, L., Zuccarelli, L.: Software defined network optimization using quantum computing. Google Patents 2020

  38. Li, Y., Sun, W., Guan, S.: A multi-controller deployment method based on PSO algorithm in SDN environment. In: 2020 IEEE 4th Information Technology, Networking, Electronic and Automation Control Conference (ITNEC). IEEE (2020)

  39. Akbar Neghabi, A., et al.: Nature-inspired meta-heuristic algorithms for solving the load balancing problem in the software-defined network. Int. J. Commun. Syst. 32(4), e3875 (2019)

    Google Scholar 

  40. Liao, W.-C., et al.: System and method for joint power allocation and routing for software defined networks. Google Patents 2019

  41. Xu, Y., et al.: Dynamic switch migration in distributed software-defined networks to achieve controller load balance. IEEE J. Sel. Areas Commun. 37(3), 515–529 (2019)

    Google Scholar 

  42. Ateya, A.A., et al.: Chaotic salp swarm algorithm for SDN multi-controller networks. Eng. Sci. Technol. 22(4), 1001–1012 (2019)

    Google Scholar 

  43. Gao, C., et al.: A particle swarm optimization algorithm for controller placement problem in software defined network. In: International Conference on Algorithms and Architectures for Parallel Processing. Springer (2015)

  44. Hu, Y., et al.: The energy-aware controller placement problem in software defined networks. IEEE Commun. Lett. 21(4), 741–744 (2016)

    Google Scholar 

  45. Liyanage, K.S.K., Ma, M., Chong, P.H.J.: Controller placement optimization in hierarchical distributed software defined vehicular networks. Comput. Netw. 135, 226–239 (2018)

    Google Scholar 

  46. Singh, A.K., Maurya, S., Srivastava, S.: Varna-based optimization: a novel method for capacitated controller placement problem in SDN. Front. Comput. Sci. 14(3), 143402 (2020)

    Google Scholar 

  47. Wang, G., et al.: An effective approach to controller placement in software defined wide area networks. IEEE Trans. Netw. Serv. Manag. 15(1), 344–355 (2017)

    Google Scholar 

  48. Wang, H., et al.: Load-balancing routing in software defined networks with multiple controllers. Comput. Netw. 141, 82–91 (2018)

    Google Scholar 

  49. Kanodia, K., et al.: CCPGWO: A meta-heuristic strategy for link failure aware placement of controller in SDN. In: 2020 International Conference on Inventive Computation Technologies (ICICT). IEEE (2020)

  50. Kanodia, K., et al.: HPSOSA: a hybrid approach in resilient controller placement in SDN. In: 2020 International Conference on Emerging Trends in Information Technology and Engineering (ic-ETITE). IEEE (2020)

  51. Li, Y., Sun, W., Guan, S.: A firefly inspired controller placement algorithm in software defined network. In: 2019 IEEE 2nd International Conference on Computer and Communication Engineering Technology (CCET). IEEE (2019)

  52. Sahoo, K.S., et al.: On the placement of controllers in software-defined-WAN using meta-heuristic approach. J. Syst. Softw. 145, 180–194 (2018)

    Google Scholar 

  53. Jalili, A., Keshtgari, M., Akbari, R.: Optimal controller placement in large scale software defined networks based on modified NSGA-II. Appl. Intell. 48(9), 2809–2823 (2018)

    Google Scholar 

  54. Tahmasebi, S., et al.: Cuckoo-PC: an evolutionary synchronization-aware placement of SDN controllers for optimizing the network performance in WSNs. Sensors 20(11), 3231 (2020)

    Google Scholar 

  55. Tootoonchian, A., et al.: On controller performance in software-defined networks. In: 2nd {USENIX} Workshop on Hot Topics in Management of Internet, Cloud, and Enterprise Networks and Services (Hot-ICE 12) (2012)

  56. Nasiri, A.A., Derakhshan, F.: Assignment of virtual networks to substrate network for software defined networks. Int. J. Cloud Appl. Comput. (IJCAC) 8(4), 29–48 (2018)

    Google Scholar 

  57. Zhao, W., Zhang, Z., Wang, L.: Manta ray foraging optimization: an effective bio-inspired optimizer for engineering applications. Eng. Appl. Artif. Intell. 87, 103300 (2020)

    Google Scholar 

  58. Mirjalili, S., Lewis, A.: The whale optimization algorithm. Adv. Eng. Softw. 95, 51–67 (2016)

    Google Scholar 

  59. Mirjalili, S., et al.: Salp Swarm Algorithm: a bio-inspired optimizer for engineering design problems. Adv. Eng. Softw. 114, 163–191 (2017)

    Google Scholar 

  60. Masdari, M., et al.: Optimization of airfoil Based Savonius wind turbine using coupled discrete vortex method and salp swarm algorithm. J. Clean. Prod. 222, 47–56 (2019)

    Google Scholar 

  61. El-Ashmawi, W.H., Ali, A.F.: A modified salp swarm algorithm for task assignment problem. Appl. Soft Comput. (2020). https://doi.org/10.1016/j.asoc.2020.106445

    Article  Google Scholar 

  62. Xia, C., et al.: Path planning and energy flow control of wireless power transfer for sensor nodes in wireless sensor networks. Turk. J. Electr. Eng. Comput. Sci. 26(5), 2618–2632 (2018)

    Google Scholar 

  63. Robusto, C.C.: The cosine-haversine formula. Am. Math. Mon. 64(1), 38–40 (1957)

    MathSciNet  Google Scholar 

  64. Sierpinski, W.: Pythagorean Triangles, vol. 9. Courier Corporation, Chelmsford (2003)

    MATH  Google Scholar 

  65. Weisstein, E.W.: Pythagorean Theorem. https://mathworld.wolfram.com/ (2006)

  66. Johnson, R.: Spherical Trigonometry. West Hills Institute of Mathematics. https://www.math.ucla.edu/robjohn/math/spheretrig.pdf

  67. Liao, J., et al.: Density cluster based approach for controller placement problem in large-scale software defined networkings. Comput. Netw. 112, 24–35 (2017)

    Google Scholar 

  68. Lange, S., et al.: Heuristic approaches to the controller placement problem in large scale SDN networks. IEEE Trans. Netw. Serv. Manag. 12(1), 4–17 (2015)

    Google Scholar 

  69. Yoon, S.-K., et al.: Controller placement algorithms in software defined network—a review of trends and challenges. In: MATEC Web of Conferences. EDP Sciences (2017)

  70. Qi, Y., et al.: Towards multi-controller placement for SDN based on density peaks clustering. In: ICC 2019- 019 IEEE International Conference on Communications (ICC). IEEE (2019)

  71. Wang, G., et al.: A K-means-based network partition algorithm for controller placement in software defined network. In: 2016 IEEE International Conference on Communications (ICC). IEEE (2016)

  72. Masdari, M., Khezri, H.: Efficient VM migrations using forecasting techniques in cloud computing: a comprehensive review. Cluster Comput. (2020). https://doi.org/10.1007/s10586-019-03032-x

    Article  Google Scholar 

  73. Mirjalili, S.: Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm. Knowl.-Based Syst. 89, 228–249 (2015)

    Google Scholar 

  74. Mirjalili, S., Mirjalili, S.M., Hatamlou, A.: Multi-verse optimizer: a nature-inspired algorithm for global optimization. Neural Comput. Appl. 27(2), 495–513 (2016)

    Google Scholar 

  75. Mirjalili, S.: SCA: a sine cosine algorithm for solving optimization problems. Knowl.-Based Syst. 96, 120–133 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Masdari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Firouz, N., Masdari, M., Sangar, A.B. et al. A novel controller placement algorithm based on network portioning concept and a hybrid discrete optimization algorithm for multi-controller software-defined networks. Cluster Comput 24, 2511–2544 (2021). https://doi.org/10.1007/s10586-021-03264-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-021-03264-w

Keywords

Navigation