Skip to main content

Advertisement

Log in

A survey and classification of the workload forecasting methods in cloud computing

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

Workload prediction is one of the important parts of proactive resource management and auto-scaling in cloud computing. Accurate prediction of workload in cloud computing is of high importance for improving cloud performance, mitigate energy consumptions, meeting the required quality of service (QoS) level, predicting the energy consumption of data centers (DCs), and improving the cloud service providers’ scalability. However, in cloud computing context workload prediction is a challenging issue and various schemes using machine learning, data mining, and mathematical methods to deal with this issue. This scheme presents an extensive literature review of the workload prediction schemes proposed in the literature to improve resource management in the cloud DCs. It first provides the required knowledge regarding the workload prediction context and presents a taxonomy of the workload prediction schemes according to their applied prediction algorithm. Moreover, the main contributions of these schemes are illustrated and their major advantages and limitation are specified. At last, the open research opportunities in the workload prediction field are focused and the concluding remarks are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30

Similar content being viewed by others

References

  1. Masdari, M., ValiKardan, S., Shahi, Z., Azar, S.I.: Towards workflow scheduling in cloud computing: a comprehensive analysis. J. Netw. Comput. Appl. 66, 64–82 (2016)

    Google Scholar 

  2. Masdari, M., Nabavi, S.S., Ahmadi, V.: An overview of virtual machine placement schemes in cloud computing. J. Netw. Comput. Appl. 66, 106–127 (2016)

    Google Scholar 

  3. González-Martínez, J.A., Bote-Lorenzo, M.L., Gómez-Sánchez, E., Cano-Parra, R.: Cloud computing and education: a state-of-the-art survey. Comput. Educ. 80, 132–151 (2015)

    Google Scholar 

  4. Masdari, M., Salehi, F., Jalali, M., Bidaki, M.: A survey of PSO-based scheduling algorithms in cloud computing. J. Netw. Syst. Manage. 25(1), 122–158 (2017)

    Google Scholar 

  5. Singh, S., Chana, I.: A survey on resource scheduling in cloud computing: issues and challenges. J. Grid Comput. 14(2), 217–264 (2016)

    Google Scholar 

  6. Coutinho, E.F., de Carvalho Sousa, F.R., Rego, P.A.L., Gomes, D.G., de Souza, J.N.: Elasticity in cloud computing: a survey. Ann. Telecommun. 70(7–8), 289–309 (2015)

    Google Scholar 

  7. Lorido-Botran, T., Miguel-Alonso, J., Lozano, J.A.: A review of auto-scaling techniques for elastic applications in cloud environments. J. Grid Comput. 12(4), 559–592 (2014)

    Google Scholar 

  8. Amiri, M., Mohammad-Khanli, L.: Survey on prediction models of applications for resources provisioning in cloud. J. Netw. Comput. Appl. 82, 93–113 (2017)

    Google Scholar 

  9. Singh, S., Chana, I.: QoS-aware autonomic resource management in cloud computing: a systematic review. ACM Comput. Surv. (CSUR) 48(3), 42 (2016)

    Google Scholar 

  10. Kaur, T., Chana, I.: Energy efficiency techniques in cloud computing: a survey and taxonomy. ACM Comput. Surv. (CSUR) 48(2), 22 (2015)

    Google Scholar 

  11. Dougherty, B., White, J., Schmidt, D.C.: Model-driven auto-scaling of green cloud computing infrastructure. Future Gener. Comput. Syst. 28(2), 371–378 (2012)

    Google Scholar 

  12. Qu, C., Calheiros, R.N., Buyya, R.: Auto-scaling web applications in clouds: a taxonomy and survey. ACM Comput. Surv. (CSUR) 51(4), 73 (2018)

    Google Scholar 

  13. Netto MA, Cardonha C, Cunha RL, Assuncao MD (2014) Evaluating auto-scaling strategies for cloud computing environments. In 2014 IEEE 22nd International Symposium on Modelling, Analysis & Simulation of Computer and Telecommunication Systems, IEEE, p 187–196

  14. de Assunção, M.D., Cardonha, C.H., Netto, M.A., Cunha, R.L.: Impact of user patience on auto-scaling resource capacity for cloud services. Future Gener. Comput. Syst. 55, 41–50 (2016)

    Google Scholar 

  15. Qu, C., Calheiros, R.N., Buyya, R.: Auto-scaling web applications in clouds: a taxonomy and survey. ACM Comput. Surv. 51(4), 73 (2016)

    Google Scholar 

  16. Turowski M, Lenk A (2015) Vertical scaling capability of OpenStack. Service-Oriented Computing-ICSOC 2014 Workshops. Springer, Cham, p 351–362

  17. Cai, Z., Li, Q., Li, X.: Elasticsim: a toolkit for simulating workflows with cloud resource runtime auto-scaling and stochastic task execution times. J. Grid Comput. 15(2), 257–272 (2017)

    Google Scholar 

  18. Armant, V., De Cauwer, M., Brown, K.N., O’Sullivan, B.: Semi-online task assignment policies for workload consolidation in cloud computing systems. Future Gener. Comput. Syst. 82, 89–103 (2018)

    Google Scholar 

  19. Kardani‐Moghaddam, S., Buyya, R., Ramamohanarao, K.: Performance anomaly detection using isolation‐trees in heterogeneous workloads of web applications in computing clouds. Concurr. Comput. (2019). https://doi.org/10.1002/cpe.5306

    Article  Google Scholar 

  20. Bajaj S (2018) Current drift in energy efficiency cloud computing: new provocations, workload prediction, consolidation, and resource over commitment. In critical research on Scalability and security issues in virtual cloud environments: IGI Global, Pennsylvania, p 283–303

  21. Li, L., Feng, M., Jin, L., Chen, S., Ma, L., Gao, J.: Domain knowledge embedding regularization neural networks for workload prediction and analysis in cloud computing. J. Inf. Technol. Res. (JITR) 11(4), 137–154 (2018)

    Google Scholar 

  22. Guo, M., Guan, Q., Ke, W.: Optimal scheduling of VMs in queueing cloud computing systems with a heterogeneous workload. IEEE Access 6, 15178–15191 (2018)

    Google Scholar 

  23. Pagán, J., Zapater, M., Ayala, J.L.: Power transmission and workload balancing policies in eHealth mobile cloud computing scenarios. Future Gener. Comput. Syst. 78, 587–601 (2018)

    Google Scholar 

  24. Deng, R., Lu, R., Lai, C., Luan, T.H., Liang, H.: Optimal workload allocation in fog-cloud computing toward balanced delay and power consumption. IEEE Internet Things J. 3(6), 1171–1181 (2016)

    Google Scholar 

  25. Zhong, C., Yuan, X.: Intelligent elastic scheduling algorithms for PaaS cloud platform based on load prediction. 2019 IEEE 8th Joint International Information Technology and Artificial Intelligence Conference (ITAIC), pp. 1500–1503. IEEE, New Jersey (2019)

    Google Scholar 

  26. Youssef, F., El Habib, B.L., Hamza, R., El Houssine, L., Ahmed, E., Hanoune, M.: A new conception of load balancing in cloud computing using tasks classification levels. Int. J. Cloud Appl. Comput. (IJCAC) 8(4), 118–133 (2018)

    Google Scholar 

  27. Stergiou, C., Psannis, K.E., Kim, B.-G., Gupta, B.: Secure integration of IoT and cloud computing. Future Gener. Comput. Syst. 78, 964–975 (2018)

    Google Scholar 

  28. Stergiou, C., Psannis, K.E., Gupta, B.B., Ishibashi, Y.: Security, privacy & efficiency of sustainable cloud computing for big data & IoT. Sustain. Comput. 19, 174–184 (2018)

    Google Scholar 

  29. Sonkar, S., Kharat, M.: Load prediction analysis based on virtual machine execution time using optimal sequencing algorithm in cloud federated environment. Int. J. Inf. Technol. 11(2), 265–275 (2019)

    Google Scholar 

  30. Singh, P., Gupta, P., Jyoti, K.: Tasm: technocrat arima and svr model for workload prediction of web applications in cloud. Clus. Comput. 22(2), 619–633 (2019)

    Google Scholar 

  31. Sharma, P., Sengupta, J., Suri, P.: Survey of intrusion detection techniques and architectures in cloud computing. IJHPCN 13(2), 184–198 (2019)

    Google Scholar 

  32. Rahhali, H., Hanoune, M.: A new conception of load balancing in cloud computing using Hybrid heuristic algorithm. Int. J. Comput. Sci. Issues (IJCSI) 15(6), 1–8 (2018)

    Google Scholar 

  33. Qaddoum, K.S., El Emam, N.N., Abualhaj, M.A.: Elastic neural network method for load prediction in cloud computing grid. Int. J. Electr. Comput. Eng. 9(2), 1201 (2019)

    Google Scholar 

  34. Prassanna J, Venkataraman N Adaptive regressive holt–winters workload prediction and firefly optimized lottery scheduling for load balancing in cloud. Wireless Networks

  35. Patel, D., Gupta, R.K., Pateriya, R.: Energy-aware prediction-based load balancing approach with VM migration for the cloud environment. Data engineering and applications, pp. 59–74. Springer, Singapore (2019)

    Google Scholar 

  36. Nguyen, H.M., Kalra, G., Kim, D.: Host load prediction in cloud computing using long short-term memory encoder–decoder. J. Supercomput. (2019). https://doi.org/10.1007/s11227-019-02967-7

    Article  Google Scholar 

  37. Nguyen, H.M., Kalra, G., Jun, T.J., Woo, S., Kim, D.: ESNemble: an echo state network-based ensemble for workload prediction and resource allocation of Web applications in the cloud. J. Supercomput. 75(10), 6303–6323 (2019)

    Google Scholar 

  38. Li, L., Wang, Y., Jin, L., Zhang, X., Qin, H.: Two-stage adaptive classification cloud workload prediction based on neural networks. Int. J. Grid High Perform. Comput. (IJGHPC) 11(2), 1–23 (2019)

    Google Scholar 

  39. Kirchoff DF, Xavier M, Mastella J, De Rose CA (2019) A preliminary study of machine learning workload prediction techniques for cloud applications. In 2019 27th Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP). IEEE, New Jersey, p 222–227

  40. Gupta, B., Agrawal, D.P., Yamaguchi, S.: Handbook of research on modern cryptographic solutions for computer and cyber security. IGI global, Pennsylvania (2016)

    Google Scholar 

  41. Bhagavathiperumal, S., Goyal, M.: Dynamic provisioning of cloud resources based on workload prediction. Computing and Network Sustainability., pp. 41–49. Springer, Singapore (2019)

    Google Scholar 

  42. Amiri, M., Mohammad-Khanli, L., Mirandola, R.: A new efficient approach for extracting the closed episodes for workload prediction in cloud. Computing (2019). https://doi.org/10.1007/s00607-019-00734-3

    Article  Google Scholar 

  43. Zhang, H., Jiang, G., Yoshihira, K., Chen, H., Saxena, A.: Intelligent workload factoring for a hybrid cloud computing model. 2009 Congress on Services-I, pp. 701–708. IEEE, New Jersey (2009)

    Google Scholar 

  44. Di S, Wang CL (2013) Minimization of cloud task execution length with workload prediction errors. In 20th Annual International Conference on High Performance Computing. IEEE, New Jersey, p 69–78

  45. Khoshkbarforoushha, A., Ranjan, R., Gaire, R., Abbasnejad, E., Wang, L., Zomaya, A.Y.: Distribution based workload modelling of continuous queries in clouds. IEEE Trans. Emerg. Topics Comput. 5(1), 120–133 (2017)

    Google Scholar 

  46. Wang P, Fang W, Guo B, Bao H (2017) Apply petri nets to human performance and workload prediction under multitask. In International Conference on Applied Human Factors and Ergonomics. Springer, Cham. p 395–405

  47. Reeba PJ, Shaji R, Jayan J (2016) A secure virtual machine migration using processor workload prediction method for cloud environment. In 2016 International Conference on Circuit, Power and Computing Technologies (ICCPCT), IEEE, p 1–6

  48. Baldan, F.J., Ramirez-Gallego, S., Bergmeir, C., Benitez-Sanchez, J.M., Herrera, F.: A forecasting methodology for workload forecasting in cloud systems. IEEE Trans. Cloud Comput. 6(4), 929–941 (2016)

    Google Scholar 

  49. Singh N, Rao S (2012) Online ensemble learning approach for server workload prediction in large datacenters. In 2012 11th International Conference on Machine Learning and Applications. IEEE, p 68–71

  50. Hagan, M.T., Behr, S.M.: The time series approach to short term load forecasting. IEEE Trans. Power Syst. 2(3), 785–791 (1987)

    Google Scholar 

  51. Babu, K.R., Samuel, P.: Interference aware prediction mechanism for auto scaling in cloud. Comput. Electr. Eng. 69, 351–363 (2017)

    Google Scholar 

  52. Antonescu, A.-F., Braun, T.: Simulation of SLA-based VM-scaling algorithms for cloud-distributed applications. Future Gener. Comput. Syst. 54, 260–273 (2016)

    Google Scholar 

  53. Yang J, Liu C, Shang Y, Mao Z, Chen J (2013) Workload predicting-based automatic scaling in service clouds. In Cloud Computing (CLOUD), 2013 IEEE Sixth International Conference on IEEE. p 810–815

  54. Bao J, Lu Z, Wu J, Zhang S, Zhong Y (2014) Implementing a novel load-aware auto scale scheme for private cloud resource management platform. In Network Operations and Management Symposium (NOMS), 2014 IEEE. IEEE, p 1–4

  55. Khorsand, R., Ghobaei-Arani, M., Ramezanpour, M.: WITHDRAWN: a fuzzy auto-scaling approach using workload prediction for MMOG application in a cloud environment. Elsevier, Amsterdam (2018)

    Google Scholar 

  56. Li S, Wang Y, Qiu X, Wang D, Wang L (2013) A workload prediction-based multi-vm provisioning mechanism in cloud computing. In 2013 15th Asia-Pacific Network Operations and Management Symposium (APNOMS). IEEE, p 1–6

  57. Kumar AS, Mazumdar S (2016) Forecasting HPC workload using ARMA models and SSA. In 2016 International Conference on Information Technology (ICIT). IEEE, p 294–297

  58. Calheiros, R.N., Masoumi, E., Ranjan, R., Buyya, R.: Workload prediction using ARIMA model and its impact on cloud applications’ QoS. IEEE Trans. Cloud Comput. 3(4), 449–458 (2015)

    Google Scholar 

  59. Messias, V.R., Estrella, J.C., Ehlers, R., Santana, M.J., Santana, R.C., Reiff-Marganiec, S.: Combining time series prediction models using genetic algorithm to autoscaling Web applications hosted in the cloud infrastructure. Neural Comput. Appl. 27(8), 2383–2406 (2016)

    Google Scholar 

  60. Barati, M., Sharifian, S.: A hybrid heuristic-based tuned support vector regression model for cloud load prediction. J. Supercomput. 71(11), 4235–4259 (2015)

    Google Scholar 

  61. Raghunath, B.R., Annappa, B.: Virtual machine migration triggering using application workload prediction. Procedia Comput. Sci. 54, 167–176 (2015)

    Google Scholar 

  62. Tong, J.J., Hai-hong, E., Song, M.N., Song, J.D.: Host load prediction in cloud based on classification methods. J. China Univ. Posts Telecommun. 21(4), 40–46 (2014)

    Google Scholar 

  63. Zhong, W., Zhuang, Y., Sun, J., Gu, J.: A load prediction model for cloud computing using PSO-based weighted wavelet support vector machine. Appl. Intell. 48(11), 4072–4083 (2018)

    Google Scholar 

  64. Nikravesh AY, Ajila SA, Lung CH (2015) Towards an autonomic auto-scaling prediction system for cloud resource provisioning. In Proceedings of the 10th International Symposium on Software Engineering for Adaptive and Self-Managing Systems. IEEE Press, p 35–45

  65. Cetinski, K., Juric, M.B.: AME-WPC: advanced model for efficient workload prediction in the cloud. J. Netw. Compu. Appl. 55, 191–201 (2015)

    Google Scholar 

  66. Nehru EI, Venkatalakshmi B, Balalcrishnant R, Nithya R (2013) Neural load prediction technique for power optimization in cloud management system. In 2013 IEEE Conference on Information & Communication Technologies. IEEE, p 541–544

  67. Nguyen HM, Woo S, Im J, Jun T, Kim D (2016) A workload prediction approach using models stacking based on recurrent neural network and autoencoder. In 2016 IEEE 18th International Conference on High Performance Computing and Communications; IEEE 14th International Conference on Smart City; IEEE 2nd International Conference on Data Science and Systems (HPCC/SmartCity/DSS). IEEE, p 929–936

  68. Wamba GM, Li Y, Orgerie AC, Beldiceanu N, Menaud JM (2017) Cloud workload prediction and generation models. In 2017 29th International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD). IEEE, p 89–96

  69. Yu Y, Jindal V, Yen IL, Bastani F (2016) Integrating clustering and learning for improved workload prediction in the cloud. In 2016 IEEE 9th International Conference on Cloud Computing (CLOUD). IEEE, p 876–879

  70. Song, B., Yu, Y., Zhou, Y., Wang, Z., Du, S.: Host load prediction with long short-term memory in cloud computing. J. Supercomput. 74(12), 6554–6568 (2018)

    Google Scholar 

  71. Imam MT, Miskhat SF, Rahman RM, Amin MA (2011) Neural network and regression based processor load prediction for efficient scaling of Grid and Cloud resources. In 14th International Conference on Computer and Information Technology (ICCIT 2011). IEEE, p 333–338

  72. Yang, Q., Zhou, Y., Yu, Y., Yuan, J., Xing, X., Du, S.: Multi-step-ahead host load prediction using autoencoder and echo state networks in cloud computing. J. Supercomput. 71(8), 3037–3053 (2015)

    Google Scholar 

  73. Kumar, J., Singh, A.K.: Workload prediction in cloud using artificial neural network and adaptive differential evolution. Future Gener. Comput. Syst. 81, 41–52 (2018)

    Google Scholar 

  74. Lu, Y., Panneerselvam, J., Liu, L.: Wu Y (2016) Rvlbpnn: a workload forecasting model for smart cloud computing. Sci. Prog. 2016, 9 (2016)

    Google Scholar 

  75. Zhou, X., et al.: Load balancing prediction method of cloud storage based on analytic hierarchy process and hybrid hierarchical genetic algorithm. SpringerPlus 5(1), 1989 (2016)

    Google Scholar 

  76. Kousiouris, G., Cucinotta, T., Varvarigou, T.: The effects of scheduling, workload type and consolidation scenarios on virtual machine performance and their prediction through optimized artificial neural networks. J. Syst. Softw. 84(8), 1270–1291 (2011)

    Google Scholar 

  77. Ramezani F, Naderpour M (2017) A fuzzy virtual machine workload prediction method for cloud environments. In 2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). IEEE, p 1–6

  78. Yang, J., et al.: A cost-aware auto-scaling approach using the workload prediction in service clouds. Inf. Syst. Front. 16(1), 7–18 (2014)

    MathSciNet  Google Scholar 

  79. Liu B, Lin Y, Chen Y (2016) Quantitative workload analysis and prediction using Google cluster traces. In Computer Communications Workshops (INFOCOM WKSHPS), 2016 IEEE Conference on, 2016. p 935–940

  80. Di S, Kondo D, Cirne W (2012) Host load prediction in a Google compute cloud with a Bayesian model. In Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis. IEEE Computer Society Press, p. 21

  81. Dietrich B, Nunna S, Goswami D, Chakraborty S, Gries M (2010) LMS-based low-complexity game workload prediction for DVFS. In 2010 IEEE International Conference on Computer Design. IEEE, p 417–424

  82. Tian, C., et al.: Minimizing content reorganization and tolerating imperfect workload prediction for cloud-based video-on-demand services. IEEE Trans. Serv. Comput. 9(6), 926–939 (2016)

    Google Scholar 

  83. Patel, Y.S., Misra, R.: Performance comparison of deep VM workload prediction approaches for cloud. In Progress in Computing, Analytics and Networking, pp. 149–160. Springer, Singapore (2018)

    Google Scholar 

  84. Gupta S, Dinesh DA (2017) Resource usage prediction of cloud workloads using deep bidirectional long short term memory networks. In 2017 IEEE International Conference on Advanced Networks and Telecommunications Systems (ANTS). IEEE, p 1–6

  85. Zhang, Q., Yang, L.T., Yan, Z., Chen, Z., Li, P.: An efficient deep learning model to predict cloud workload for industry informatics. IEEE Trans. Industr. Inf. 14(7), 3170–3178 (2018)

    Google Scholar 

  86. Gong Z, Gu X, Wilkes J (2010) Press: predictive elastic resource scaling for cloud systems. In Network and Service Management (CNSM), 2010 International Conference on, 2010. p 9–16

  87. Jv, B.B., Dharma, D.: HAS: hybrid auto-scaler for resource scaling in cloud environment. J. Parallel Distrib. Comput. 120, 1–15 (2018)

    Google Scholar 

  88. Panneerselvam J, Liu L, Antonopoulos N, Bo Y (2014) Workload analysis for the scope of user demand prediction model evaluations in cloud environments. In Proceedings of the 2014 IEEE/ACM 7th International Conference on Utility and Cloud Computing. IEEE Computer Society, p 883–889

  89. Pacheco-Sanchez S, Casale G, Scotney B, McClean S, Parr G, Dawson S (2011) Markovian workload characterization for qos prediction in the cloud. In 2011 IEEE 4th International Conference on Cloud Computing. p 147–154

  90. Shen Z, Subbiah S, Gu X, Wilkes J (2011) Cloudscale: elastic resource scaling for multi-tenant cloud systems. In Proceedings of the 2nd ACM Symposium on Cloud Computing. p. 5

  91. Chen, X.: Decentralized computation offloading game for mobile cloud computing. IEEE Trans. Parallel Distrib. Syst. 26(4), 974–983 (2014)

    Google Scholar 

  92. Khan A, Yan X, Tao S, Anerousis N (2012) Workload characterization and prediction in the cloud: A multiple time series approach. In 2012 IEEE Network Operations and Management Symposium. p 1287–1294

  93. Guo Y, Stolyar A, Walid A (2018) Online vm auto-scaling algorithms for application hosting in a cloud. IEEE Transactions on Cloud Computing

  94. Gandhi, A., Dube, P., Karve, A., Kochut, A., Zhang, L.: Model-driven optimal resource scaling in cloud. Softw. Syst. Model. 17(2), 509–526 (2017)

    Google Scholar 

  95. Vondra, T., Šedivý, J.: Cloud autoscaling simulation based on queueing network model. Simul. Model. Pract. Theory 70, 83–100 (2017)

    Google Scholar 

  96. Sahni, J., Vidyarthi, D.P.: Heterogeneity-aware adaptive auto-scaling heuristic for improved QoS and resource usage in cloud environments. Computing 99(4), 351–381 (2017)

    MathSciNet  Google Scholar 

  97. Jiang J, Lu J, Zhang G, Long G (2013) Optimal cloud resource auto-scaling for web applications. In Cluster, Cloud and Grid Computing (CCGrid), 2013 13th IEEE/ACM International Symposium on, 2013. p 58–65

  98. Jheng JJ, Tseng FH, Chao HC, Chou LD (2014) A novel VM workload prediction using Grey Forecasting model in cloud data center. In The International Conference on Information Networking 2014 (ICOIN2014). p 40–45

  99. Kluge F, Uhrig S, Mische J, Satzger B, Ungerer T (2010) Dynamic workload prediction for soft real-time applications. In 2010 10th IEEE International Conference on Computer and Information Technology. p 1841–1848

  100. Ardagna D, Casolari S, Panicucci B (2011) Flexible distributed capacity allocation and load redirect algorithms for cloud systems. In 2011 IEEE 4th International Conference on Cloud Computing. p 163–170

  101. Qazi K, Li Y, Sohn A (2013) PoWER: prediction of workload for energy efficient relocation of virtual machines. In Proceedings of the 4th annual Symposium on Cloud Computing, 2013: ACM, p. 31

  102. Hu Y, Deng B, Peng F, Wang D (2016) Workload prediction for cloud computing elasticity mechanism. In 2016 IEEE International Conference on Cloud Computing and Big Data Analysis (ICCCBDA). p 244–249

  103. Ghorbani M, Wang Y, Xue Y, Pedram M, Bogdan P (2014) Prediction and control of bursty cloud workloads: a fractal framework. In Proceedings of the 2014 International Conference on Hardware/Software Codesign and System Synthesis. ACM, p. 12

  104. Cortez E, Bonde A, Muzio A, Russinovich M, Fontoura M, Bianchini R (2017) Resource central: Understanding and predicting workloads for improved resource management in large cloud platforms. In Proceedings of the 26th Symposium on Operating Systems Principles. p 153–167

  105. Ganapathi A, Chen Y, Fox A, Katz R, Patterson D (2010) Statistics-driven workload modeling for the cloud. In 2010 IEEE 26th International Conference on Data Engineering Workshops (ICDEW 2010). p 87–92

  106. Nguyen HM, Kim SH, Le DT, Heo S, Im J, Kim D (2015) Epcloud flow: load prediction and migration optimizations for epc network on cloud. In 2015 IEEE 8th International Conference on Cloud Computing. p 981–984

  107. Prevost JJ, Nagothu K, Jamshidi M, Kelley B (2014) Optimal calculation overhead for energy efficient cloud workload prediction. In 2014 World Automation Congress (WAC), 2014: IEEE, p 741–747

  108. Liu, Y., Gong, B., Xing, C., Jian, Y.: A virtual machine migration strategy based on time series workload prediction using cloud model. Math. Probl. Eng. 2014, 11 (2014)

    Google Scholar 

  109. Lyu H, Li P, Yan R, Masood A, Sheng B, Luo Y (2016) Load forecast of resource scheduler in cloud architecture. In 2016 International Conference on Progress in Informatics and Computing (PIC). p 508–512

  110. Qazi K, Li Y, Sohn A (2014) Workload prediction of virtual machines for harnessing data center resources. In 2014 IEEE 7th International Conference on Cloud Computing, 2014: IEEE, p 522–529

  111. Duggan J, Chi Y, Hacigümüş H, Zhu S, Cetintemel U (2013) Packing light: portable workload performance prediction for the cloud. In 2013 IEEE 29th International Conference on Data Engineering Workshops (ICDEW). p 258–265

  112. Zhang L, Zhang Y, Jamshidi P, Xu L, Pahl C (2014) Workload patterns for quality-driven dynamic cloud service configuration and auto-scaling. In Proceedings of the 2014 IEEE/ACM 7th International Conference on Utility and Cloud Computing, 2014: IEEE Computer Society. p 156–165

  113. Cao, J., Fu, J., Li, M., Chen, J.: CPU load prediction for cloud environment based on a dynamic ensemble model. Software 44(7), 793–804 (2014)

    Google Scholar 

  114. Shariffdeen R, Munasinghe D, Bhathiya H, Bandara U, Bandara HD (2016) Adaptive workload prediction for proactive auto scaling in PaaS systems. In 2016 2nd International Conference on Cloud Computing Technologies and Applications (CloudTech), 2016: IEEE, p 22–29

  115. Singh, N., Rao, S.: Ensemble learning for large-scale workload prediction. IEEE Trans. Emerg. Topics Comput. 2(2), 149–165 (2014)

    Google Scholar 

  116. Sommer M, Klink M, Tomforde S, Hähner J (2016) Predictive load balancing in cloud computing environments based on ensemble forecasting. In 2016 IEEE International Conference on Autonomic Computing (ICAC), 2016: IEEE, p 300–307

  117. Hu R, Jiang J, Liu G, Wang L (2013) KSwSVR: a new load forecasting method for efficient resources provisioning in cloud. In 2013 IEEE International Conference on Services Computing, 2013: IEEE, p 120–127

  118. Tarsa SJ, Kumar AP, Kung H (2014) Workload prediction for adaptive power scaling using deep learning. In 2014 IEEE International Conference on IC Design & Technology, 2014: IEEE, p 1–5

  119. Janardhanan D, Barrett E (2017) CPU workload forecasting of machines in data centers using LSTM recurrent neural networks and ARIMA models. In 2017 12th International Conference for Internet Technology and Secured Transactions (ICITST), 2017: IEEE, p 55–60

  120. Bi J, Zhang L, Yuan H, Zhou M (2018) Hybrid task prediction based on wavelet decomposition and ARIMA model in cloud data center. In 2018 IEEE 15th International Conference on Networking, Sensing and Control (ICNSC), 2018: IEEE, p 1–6

  121. Liu, C., Liu, C., Shang, Y., Chen, S., Cheng, B., Chen, J.: An adaptive prediction approach based on workload pattern discrimination in the cloud. J. Netw. Comput. Appl. 80, 35–44 (2017)

    Google Scholar 

  122. Tang, X., Liao, X., Zheng, J., Yang, X.: Energy efficient job scheduling with workload prediction on cloud data center. Clus. Comput. 21(3), 1581–1593 (2018)

    Google Scholar 

  123. Gandhi A, Chen Y, Gmach D, Arlitt M, Marwah M (2011) Minimizing data center SLA violations and power consumption via hybrid resource provisioning. In 2011 International Green Computing Conference and Workshops, 2011: IEEE, p 1–8

  124. Guo J, Wu J, Na J, Zhang B (2017) A type-aware workload prediction strategy for non-stationary cloud service. In 2017 IEEE 10th Conference on Service-Oriented Computing and Applications (SOCA), 2017: IEEE, p 98–103

  125. Ahn, Y.W., Cheng, A.M., Baek, J., Jo, M., Chen, H.-H.: An auto-scaling mechanism for virtual resources to support mobile, pervasive, real-time healthcare applications in cloud computing. IEEE Netw. 27(5), 62–68 (2013)

    Google Scholar 

  126. Shahin AA (2017) Automatic cloud resource scaling algorithm based on long short-term memory recurrent neural network. arXiv preprint arXiv:1701.03295

  127. Ali-Eldin A, Tordsson J, Elmroth E, Kihl M (2013) Workload classification for efficient auto-scaling of cloud resources. Tech. Rep.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Afsane Khoshnevis.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Masdari, M., Khoshnevis, A. A survey and classification of the workload forecasting methods in cloud computing. Cluster Comput 23, 2399–2424 (2020). https://doi.org/10.1007/s10586-019-03010-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-019-03010-3

Keywords

Navigation