Skip to main content
Log in

An efficient seed points selection approach in dominant color descriptors (DCD)

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

The content-based image retrieval (CBIR) system accepts the input in the form of images and retrieves the relevant images from the database. The CBIR system automatically extracts the prominent key information from the image involved in the retrieval task. The color is one of the key information of the image and it is represented by dominant color descriptors (DCD). Here, similar colors get clustered and the mean value of each cluster represents the dominant color. The random number of unstable cluster formation in DCD alleviates the CBIR system performance. The proposed work has minimized the drawback of DCD by introducing seed points selection based on the mean, maximum and minimum value of the color pixels present in the image. Moreover, this work suggests the optimal cluster number by validating the different combinations of the proposed stable dominant color clusters. The retrieval precision of the proposed CBIR has improved since this work gives equal weight for both the dominant color and its occurrence probability in distance metric calculation. Finally, four standard datasets namely Wang’s, Corel-10k, OT-scene, and Oxford flower are considered for evaluation, and it gives more number of relevant images compared to the state-of-the-art dominant color feature extraction techniques used on these datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Jiang, X., Li, C., Sun, J.: A modified k-means clustering for mining of multimedia databases based on dimensionality reduction and similarity measures. Clust. Comput. (2017). https://doi.org/10.1007/s10586-017-0949-6

    Article  Google Scholar 

  2. Ye, M., Johns, E., Walter, B., Meining, A., Yang, G.Z.: An image retrieval framework for real-time endoscopic image retargeting. Int. J. CARS. 12, 1281 (2017). https://doi.org/10.1007/s11548-017-1620-7

    Article  Google Scholar 

  3. Abdullah, S.L.S., Hambali, H.A., Jamil, N.: Segmentation of natural images using an improved thresholding-based technique. Procedia Eng. 41, 938–944 (2012)

    Article  Google Scholar 

  4. Alkhalaf, S., Alfarraj, O., Hemeida, A.M.: Fuzzy-VQ image compression based hybrid PSOGSA optimization algorithm. In: IEEE International Conference on Fuzzy Systems (FUZZIEEE), pp. 1–6 (2015)

  5. Equitz, W.H.: A new vector quantization clustering algorithm. IEEE Trans. Acoust. Speech Signal Process. 37(10), 1568–1575 (1989)

    Article  Google Scholar 

  6. EmreCelebi, M.: Improving the performance of k-means for color quantization. Image Vis. Comput. 29(4), 260–271 (2011)

    Article  Google Scholar 

  7. MacQueen, J.B.: Some methods for classification and analysis of multivariate observations. In: Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability, vol. 1. University of California Press, Berkeley, pp. 281–297 (1967)

  8. Bai, C., Zhang, J., Liu, Z., Zhao, W.L.: K-means based histogram using multiresolution feature vectors for color texture database retrieval. Multimed. Tools Appl. 74, 1469–1488 (2015)

    Article  Google Scholar 

  9. Agrawal, S.C., Jalal, A.S., Tripathi, R.K.: A hybrid method for image categorization using shape descriptors and histogram of oriented gradients. In: Proceedings of International Conference on Computer Vision and Image Processing, pp. 285–295 (2017)

  10. Han, C.: Improved SLIC imagine segmentation algorithm based on K-means. Clust. Comput. 20, 1017–1023 (2017). https://doi.org/10.1007/s10586-017-0792-9

    Article  Google Scholar 

  11. Pei, J., Zhao, L., Dong, X., Dong, X.: Effective algorithm for determining the number of clusters and its application in image segmentation. Clust. Comput. 20, 2845–2854 (2017). https://doi.org/10.1007/s10586-017-1083-1

    Article  Google Scholar 

  12. Zhou, Y., Ren, Q.: Fuzzy c-means clustering algorithm for performance improvement of ENN. Clust. Comput. (2017). https://doi.org/10.1007/s10586-017-1346-x

    Article  Google Scholar 

  13. Chen, S.X., Li, F.W., Zhu, W.L., Zhang, T.Q.: Initial codebook algorithm of vector quantization. IEICE Trans. Inf. Syst. E91-D(8), 2189–2191 (2008)

    Article  Google Scholar 

  14. Katsavounidis, I., Kuo, C.C.J., Zhang, Z.: A new initialization technique for generalized Lloyd iteration. IEEE Signal Process. Lett. 1(10), 144–146 (1994)

    Article  Google Scholar 

  15. Lai, J.Z.C., Liaw, Y.C., Liu, J.: A fast VQ codebook generation algorithm using code word displacement. Pattern Recogn. 41(1), 315–319 (2008)

    Article  Google Scholar 

  16. Wang, L., Lu, Z.M., Ma, L.H., Feng, Y.P.: VQ codebook design using modified K-means algorithm with feature classification and grouping based initialization. Multimed. Tools Appl. 77–7, 8495–8510 (2018). https://doi.org/10.1007/s11042-017-4747-1

    Article  Google Scholar 

  17. Sajjad, M., Ullah, A., Ahmad, J., Abbas, N., Rho, S., Baik, S.W.: Integrating salient colors with rotational invariant texture features for image representation in retrieval systems. Multimed. Tools Appl. 77, 4769–4789 (2018). https://doi.org/10.1007/s11042-017-5010-5

    Article  Google Scholar 

  18. Fadaei, S., Amirfattahi, R., Ahmadzadeh, M.R.: New content-based image retrieval system based on optimised integration of DCD, wavelet and curvelet features. IET Image Process. 11(2), 89–98 (2017)

    Article  Google Scholar 

  19. Yang, N.C., Chang, W.H., Kuo, C.M., Li, T.H.: A fast MPEG-7 dominant color extraction with new similarity measure for image retrieval. J. Vis. Commun. Image Represent. 19, 92–105 (2008). https://doi.org/10.1016/j.jvcir.2007.05.003

    Article  Google Scholar 

  20. Pavithra, L.K., Sree Sharmila, T.: Retrieval of homogeneous images using appropriate color space selection. In: International Conference on Computational Intelligence in Data Mining, pp. 739–747 (2017). https://doi.org/10.1007/978-981-10-3874-7_70

  21. Clausi, D.: K-means Iterative Fisher (KIF) unsupervised clustering algorithm applied to image texture segmentation. Pattern Recogn. Lett. 35(9), 1959–1972 (2002)

    Article  Google Scholar 

  22. Wang, J.Z., Li, J., Wiederhold, G.: SIMPLIcity: semantics-sensitive integrated matching for picture libraries. IEEE Trans. Pattern Anal. Mach. Intell. 23(9), 947–963 (2001)

    Article  Google Scholar 

  23. Oliva, A., Torralba, A.: Modeling the shape of the scene: a holistic representation of the spatial envelope. Int. J. Comput. Vis. 42(3), 145–175 (2001)

    Article  Google Scholar 

  24. Liu, G.-H., Yang, J.-Y., et al.: Content-based image retrieval using computational visual attention model. Pattern Recogn. 48(8), 2554–2566 (2015)

    Article  MathSciNet  Google Scholar 

  25. Nilsback, M.-E., Zisserman, A.: A visual vocabulary for flower classification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 1447–1454 (2006)

  26. Kassambara, A.: Practical Guide to Cluster Analysis in R: Unsupervised Machine Learning (Multivariate Analysis), vol. 1. STHDA, 1st edn (2017)

  27. Ma, W.Y., Deng, Y., Manjunath, B.S.: Tools for texture/color based search of images. In: SPIE Conference on Human Vision and Electronic Imaging II, pp. 496–507 (1997)

  28. Pavithra, L.K., Sree Sharmila, T.: An efficient framework for image retrieval using color, texture and edge features. Comput. Electr. Eng. (2017). https://doi.org/10.1016/j.compeleceng.2017.08.030

    Article  Google Scholar 

  29. Mojsilovic, A., Kovacevic, J., Hu, J., Safranek, R.J., Kicha Ganapathy, S.: Matching and retrieval based on the vocabulary and grammar of color patterns. IEEE Trans. Image Process. 9(1), 38–54 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. K. Pavithra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pavithra, L.K., Sree Sharmila, T. An efficient seed points selection approach in dominant color descriptors (DCD). Cluster Comput 22, 1225–1240 (2019). https://doi.org/10.1007/s10586-019-02907-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-019-02907-3

Keywords

Navigation