Skip to main content
Log in

An image edge recognition approach based on multi-operator dynamic weight detection in virtual reality scenario

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

Virtual reality (VR) is based on graphics, images and sensors, and its simulation environment is a real-time and dynamic three dimensions realistic image generated by computer. The detection and extraction method of image edge and contour features is one of the research contents and hotspots in image detection, processing and analysis. Based on the traditional edge detection algorithm, in this paper a dynamic weight edge detection method based on multi-operator is proposed, an image edge detection system based on VR is developed, and the proposed algorithm is compared with the traditional method from the aspects of continuity, smoothness, edge width, positioning accuracy and system performance of the edge. The results indicate that this algorithm is the optimization and supplement of the traditional edge detection algorithm, has certain advantages in continuity and positioning accuracy, and can achieve rapid detection of VR image edge, which provides a theoretical basis for the research of VR image processing in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Arbelaez, P., Maire, M., Fowlkes, C., Malik, J.: Contour detection and hierarchical image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 33(5), 898–916 (2011)

    Article  Google Scholar 

  2. Batard, T., Saint-Jean, C., Berthier, M.: A metric approach to ND images edge detection with clifford algebras. J. Math. Imaging Vis. 3(33), 296–312 (2009)

    Article  MathSciNet  Google Scholar 

  3. Bellon, O., Silva, L.: New improvment to range image segmentation by edge detection. IEEE Signal Process. Lett. 9(2), 43–45 (2002)

    Article  Google Scholar 

  4. Canny, J.: A computational approach to dege detection. IEEE Trans. Pattern Anal. Mach. Intell. 8(6), 679–698 (1986)

    Article  Google Scholar 

  5. Cremers, D., Rousson, M., Deriche, R.: A review of statistical approaches to level set segmentation: integrating color, texture, motion and shape. Int. J. Comput. Vis. 72(2), 195–215 (2007)

    Article  Google Scholar 

  6. Davies, E.R.: Machine Vision: Theory, Algorithems Practicalities. Elsevier, New York (2004)

    Google Scholar 

  7. Deriche, R., Inria, D.D.V.: Using Canny’s Criteria to Derive a Recursively implemented Optimal Ddge Detection, pp. 167–187. Kluwer Academic Publishers, Boston (1987)

    Google Scholar 

  8. Desolneux, A., Moisan, L., Morel, J.: Edge detection by helmholtz principle. J. Math. Imaging Vis. 14(3), 271–284 (2001)

    Article  Google Scholar 

  9. Galvanin, E.A.S., Vale, G.M.D., Poz, A.P.D.: The canny detection with edge region focusing using an anisotropic diffusion process. Pattern Recognit. Image Anal. 16(4), 614–621 (2006)

    Article  Google Scholar 

  10. Hafezi, M., Mittal, S., Fan, J., Migdall, A.M.A., Taylor, J.: Imaging topological edge states in silicon photonics. Nat. Photon. 7(12), 1001–1005 (2013)

    Article  Google Scholar 

  11. Haubner, M.: Virtual reality in medicine-computer graphics and interaction techniques. IEEE Trans. Inf. Technol. Biomed. 1(1), 61 (1997)

    Article  MathSciNet  Google Scholar 

  12. Ioan-Catalin, D., Dinu, C.: Local-prediction-based difference expansion reversible watermarking. IEEE Trans. Image Process. 23(4), 1779–1790 (2014)

    Article  MathSciNet  Google Scholar 

  13. Julesz, B.: A method of coding TV sigmals based on edge detection. Bell Syst. Technol. 38(4), 1001–1020 (1959)

    Article  Google Scholar 

  14. Lawson, G., Salanitri, D., Waterfield, B.: Future directions for the development of virtual reality within an automotive manufacturer. Appl. Ergon. 53(B), 323–330 (2016)

    Article  Google Scholar 

  15. Li, C., Kao, C., Gore, J., Ding, Z.: Minimization of region-scalable fitting energy for image segmentation. IEEE Trans. Image Process. 17(10), 1940–1949 (2008)

    Article  MathSciNet  Google Scholar 

  16. Mallat, S.: Multi-frequency channel decomposition of image and wavelet models. IEEE Trans. Acoust. Speech Signal Process. 37(10), 2091–2110 (1989)

    Article  Google Scholar 

  17. Mallat, S.: Singularity detection and processing with wavelet. IEEE Trans. Inf. Theory 38(2), 617–643 (1992)

    Article  MathSciNet  Google Scholar 

  18. Marr, D., Hildreth, E.: Theory of edge detection. Proc. R. Soc. Lond. Ser. B 207(1167), 187–217 (1980)

  19. Pavone, E.F., Tieri, G., Rizza, G., Tidoni, E., Grisoni, L., Aglioti, S.M.: Embodying others in immersive virtual reality: electro-cortical signatures of monitoring the errors in the actions of an avatar seen from a first-person perspective. J. Neurosci. 36(2), 268–279 (2016)

    Article  Google Scholar 

  20. Roberts, L.: Machine Perception of 3-Dimensional Solids. MIT Press, Cambridge (1965)

    Google Scholar 

  21. Shum, H., Kangs, A.: A review of image-based rendering techniques. In: Proceedings of IEEE/SPIE Visual Communications and Image Processing (2000)

  22. Tsai, P., Chang, C., Hu, Y.C., : An adaptive tow-stage edge detection scheme for digital color image. Real-Time Imaging 8(4), 329–343 (2002)

  23. Wang, D., Chen, Y., Xu, J.: Knowledge management of web financial reporting in human-computer interactive perspective. Eurasia J. Math. Sci. Technol. Educ. 13, 1–25 (2017)

    Google Scholar 

  24. Yu, Y., Chang, C.: A new edge detection approach based on image context analysis. Image Vis. Comput. 24, 1090–1102 (2006)

    Article  Google Scholar 

  25. Zhang, H., Fritts, J., Goldman, S.: Image segmentation evaluation: a survey of unsupervised methods. Comput. Vis. Image Underst. 110(2), 260–280 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

This paper is supported by grants from the National Natural Science Foundation of China (71731010, 71671048), the Natural Science Foundation of Guangdong Province (2015A030310506), the Philosophy and Social Science Planning Program of Guangdong Province (GD16XGL38), and the Philosophy and Social Science Planning Program of Guangzhou (2016GZQN32).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Wang, D. & Bi, G. An image edge recognition approach based on multi-operator dynamic weight detection in virtual reality scenario. Cluster Comput 22 (Suppl 4), 8069–8077 (2019). https://doi.org/10.1007/s10586-017-1604-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-017-1604-y

Keywords

Navigation