Skip to main content

Advertisement

Log in

Supervised machine learning techniques in cognitive radio networks during cooperative spectrum handovers

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

Cognitive communication model perform the investigation and surveillance of spectrum in cognitive radio networks abetment in advertent primary users (PUs) and in turn help in allocation of transmission space for secondary users (SUs). In effective performance of regulation of wireless channel handover strategy in cognitive computing systems, new computing models are desired in operating set of tasks to process business model, and interact naturally with humans or machine rather being programmed. Cognitive wireless network are trained via artificial intelligence (AI) and machine learning (ML) algorithms for dynamic processing of spectrum handovers. They assist human experts in making enhanced decisions by penetrating into the complexity of the handovers. This paper focuses on learning and reasoning features of cognitive radio (CR) by analyzing primary user (PU) and secondary user (SU) data communication using home location register (HLR) and visitor location register (VLR) database respectively. The SpecPSO is proposed for optimizing handovers using supervised machine learning technique for performing dynamic handover by adapting to the environment and make smart decisions compared to the traditional cooperative spectrum sensing (CSS) techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Jo, O., Cho, D.H.: Seamless spectrum handover considering differential path-loss in cognitive radio systems. IEEE Commun. Lett. 13(3), 190–192 (2009). doi:10.1109/LCOMM.2009.081496

    Article  Google Scholar 

  2. Au, E.K., Cavalcanti, D., Li, G.Y., Caldwell, W., Letaief, K.B.: Advances in standards and testbeds for cognitive radio networks: part I. IEEE Commun. Mag. 48(9), 76–77 (2010). doi:10.1109/MCOM.2010.5560590. Guest Editorial

    Article  Google Scholar 

  3. Celebi, H., Arslan, H.: Utilization of location information in cognitive wireless networks. IEEE Wirel. Commun. 14(4), 6–13 (2007). doi:10.1109/MWC.2007.4300977

    Article  Google Scholar 

  4. Wang, B., Liu, K.J.: Advances in cognitive radio networks: a survey. IEEE J. Sel. Top. Signal Process. 5, 5–23 (2011)

    Article  Google Scholar 

  5. Suganya, M., Anandakumar, H.: Handover based spectrum allocation in cognitive radio networks. In: 2013 International Conference on Green Computing, Communication and Conservation of Energy (ICGCE), Chennai, 2013, pp. 215–219. doi:10.1109/ICGCE.2013.6823431

  6. Zhao, Q., Sadler, B.M.: A survey of dynamic spectrum access. IEEE Signal Process. Mag. 24, 79–89 (2007)

    Article  Google Scholar 

  7. Lu, L., Zhou, X., Onunkwo, U., Li, G.Y.: Ten years of research in spectrum sensing and sharing in cognitive radio. EURASIP J. Wirel. Commun. Netw. 2012, 28 (2012)

    Article  Google Scholar 

  8. Wu, Y., Yang, Z.: Coexistence of primary users and secondary users under interference temperature and SINR limit. J. Electron 26, 303–311 (2009)

    Google Scholar 

  9. Sherman, M., Mody, A.N., Martinez, R., Rodriguez, C., Reddy, R.: IEEE standards supporting cognitive radio and networks, dynamic spectrum access, and coexistence. IEEE Commun. Mag. 46(7), 72–79 (2008). doi:10.1109/MCOM.2008.4557045

    Article  Google Scholar 

  10. Singh, J.S.P., Singh, R., Rai, M.K., et al.: Cooperative sensing for cognitive radio: a powerful access method for shadowing environment. Wirel. Pers. Commun. 80, 1363 (2015). doi:10.1007/s11277-014-2088-1

    Article  Google Scholar 

  11. Mitola III.: Cognitive Radio: An Integrated Agent Architecture for Software Defined Radio, Ph.D. dissertation. Royal Institute of Technology (KTH) Stockholm (2000)

  12. Akyildiz, I.F., Lee, M.Y., Vuran, M.C.: Next generation dynamic spectrum access/cognitive radio wireless networks: a survey. Comput. Netw. 50(13), 2127–2159 (2006)

    Article  MATH  Google Scholar 

  13. Kim, E., Moon, J.: A new approach to deploying private mobile network exploits. J. Supercomput. 72, 46 (2016). doi:10.1007/s11227-015-1461-5

    Article  Google Scholar 

  14. Gill, H., Lin, D., Nguyen, C., et al.: Declarative platform for high-performance network traffic analytics. Clust. Comput. 17, 1121 (2014). doi:10.1007/s10586-014-0363-2

    Article  Google Scholar 

  15. Clancy, C., Hecker, J., Stuntebeck, E., O’Shea, T.: Applications of machine learning to cognitive radio networks. IEEE Wirel. Commun. 14(4), 47–52 (2007). doi:10.1109/MWC.2007.4300983

    Article  Google Scholar 

  16. Kasabov, N., Zhou, L., Doborjeh, M.G., Doborjeh, Z.G., Yang, J.: New algorithms for encoding, learning and classification of fmri data in a spiking neural network architecture: a case on modelling and understanding of dynamic cognitive processes. In: IEEE Transactions on Cognitive and Developmental Systems, vol. 99, pp. 1. doi:10.1109/TCDS.2016.2636291

  17. Azmat, F., Chen, Y., Stocks, N.: Analysis of spectrum occupancy using machine learning algorithms. IEEE Trans. Veh. Technol. 65(9), 6853–6860 (2016). doi:10.1109/TVT.2015.2487047

    Article  Google Scholar 

  18. Pratama, M., Zhang, G., Er, M.J., Anavatti, S.: An incremental type-2 meta-cognitive extreme learning machine. IEEE Trans. Cybern. 47(2), 339–353 (2017). doi:10.1109/TCYB.2016.2514537

    Google Scholar 

  19. Gong, X., Vorobyov, S.A., Tellambura, C.: Optimal bandwidth and power allocation for sum ergodic capacity under fading channels in cognitive radio networks. IEEE Trans. Signal Process. 59(4), 1814–1826 (2011)

    Article  MathSciNet  Google Scholar 

  20. Chen, Y.S., Hong, J.S.: A relay-assisted protocol for spectrum mobility and handover in cognitive LTE networks. IEEE Syst. J. 7(1), 77–91 (2013). doi:10.1109/JSYST.2012.2205089

    Article  Google Scholar 

  21. Lu, D., Huang, X., Liu, C., Fan, J.: Adaptive power control based spectrum handover for cognitive radio networks. In: IEEE Wireless Communication and Networking Conference, pp. 1–5. Sydney, NSW (2010). doi:10.1109/WCNC.2010.5506405

  22. Thilina, K.M., Choi, K.W., Saquib, N., Hossain, E.: Machine learning techniques for cooperative spectrum sensing in cognitive radio networks. IEEE J. Sel. Areas Commun. 31(11), 2209–2221 (2013). doi:10.1109/JSAC.2013.131120

    Article  Google Scholar 

  23. Yuan, W., Leung, H., Cheng, W., Chen, S.: Optimizing voting rule for cooperative spectrum sensing through learning automata. IEEE Trans. Veh. Technol. 60(7), 3253–3264 (2011). doi:10.1109/TVT.2011.2161001

    Article  Google Scholar 

  24. Chen, H., Zhou, M., Xie, L., Wang, K., Li, J.: Joint spectrum sensing and resource allocation scheme in cognitive radio networks with spectrum sensing data falsification attack. IEEE Trans. Veh. Technol. 65(11), 9181–9191 (2016)

    Article  Google Scholar 

  25. Zhang, F., Zhou, X., Cao, X.: Location-oriented evolutionary games for price-elastic spectrum sharing. IEEE Trans. Commun. 64(9), 3958–3969 (2016). doi:10.1109/TCOMM.2016.2590418

    Article  Google Scholar 

  26. Ma, W., Fang, Y.: A pointer forwarding based local anchoring (POFLA) scheme for wireless networks. IEEE Trans. Veh. Technol. 54(3), 1135–1146 (2005). doi:10.1109/TVT.2005.844651

    Article  Google Scholar 

  27. Anandakumar, H., Umamaheswari, K.: Energy efficient network selection using 802.16g based GSM Technology. J. Comput. Sci. 10(5), 745–754 (2014). doi:10.3844/jcssp.2014.745.754

    Article  Google Scholar 

  28. Gavrilovska, L., Atanasovski, V., Macaluso, I., DaSilva, L.: Learning and reasoning in cognitive radio networks. IEEE Commun. Surv. Tutor. 15(4), 1761–1777 (2013)

    Article  Google Scholar 

  29. Lee, D., Helal, A.S., Sung, Y., Anton, S.: Situation-based assess tree for user behavior assessment in persuasive telehealth. IEEE Trans. Hum. Mach. Syst. 45(5), 624–634 (2015). doi:10.1109/THMS.2015.2443712

    Article  Google Scholar 

  30. Choi, K.W., Hossain, E., Kim, D.I.: Cooperative spectrum sensing under a random geometric primary user network model. IEEE Trans. Wirel. Commun. 10(6), 1932–1944 (2011). doi:10.1109/TWC.2011.040411.101430

    Article  Google Scholar 

  31. Cabric, D., Mishra, S.M., Brodersen, R.W.: Implementation issues in spectrum sensing for cognitive radios. In: Conference Record of the Thirty-Eighth Asilomar Conference on Signals, Systems and Computers, 2004, vol. 1, pp. 772–776, 2004. doi:10.1109/ACSSC.2004.1399240

  32. Yucek, T., Arslan, H.: A survey of spectrum sensing algorithms for cognitive radio applications. IEEE Commun. Surv. Tutor. 11(1), 116–130 (2009). doi:10.1109/SURV.2009.090109

    Article  Google Scholar 

  33. Shen, J., Jiang, T., Liu, S., Zhang, Z.: Maximum channel throughput via cooperative spectrum sensing in cognitive radio networks. IEEE Trans. Wirel. Commun. 8(10), 5166–5175 (2009). doi:10.1109/TWC.2009.081110

    Article  Google Scholar 

  34. Zhao, Z., Peng, Z., Zheng, S., Shang, J.: Cognitive radio spectrum allocation using evolutionary algorithms. IEEE Trans. Wirel. Commun. 8(9), 4421–4425 (2009). doi:10.1109/TWC.2009.080939

    Article  Google Scholar 

  35. Sadreddini, Z., Güler, E., Çavdar, T.: PSO-optimized Instant Overbooking Framework for cognitive radio networks. In: 2015 38th International Conference on Telecommunications and Signal Processing (TSP), Prague, 2015, pp. 49–53. doi:10.1109/TSP.2015.7296222

  36. Wang, G., Guo, C., Feng, S., Feng, C., Wang, S.: A two-stage cooperative spectrum sensing method for energy efficiency improvement in cognitive radio. In: 2013 IEEE 24th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), London, 2013, pp. 876–880. doi:10.1109/PIMRC.2013.6666260

  37. Xu, H., Zhou, Z.: Cognitive radio decision engine using hybrid binary particle swarm optimization. In: 2013 13th International Symposium on Communications and Information Technologies (ISCIT), Surat Thani, 2013, pp. 143–147. doi:10.1109/ISCIT.2013.6645839

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Anandakumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anandakumar, H., Umamaheswari, K. Supervised machine learning techniques in cognitive radio networks during cooperative spectrum handovers. Cluster Comput 20, 1505–1515 (2017). https://doi.org/10.1007/s10586-017-0798-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-017-0798-3

Keywords

Navigation