Skip to main content
Log in

Link the remote sensing big data to the image features via wavelet transformation

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

With the development of remote sensing technologies, especially the improvement of spatial, time and spectrum resolution, the volume of remote sensing data is bigger. Meanwhile, the remote sensing textures of the same ground object present different features in various temporal and spatial scales. Therefore, it is difficult to describe overall features of remote sensing big data with different time and spatial resolution. To represent big data features conveniently and intuitively compared with classical methods, we propose some texture descriptors from different sides based on wavelet transforms. These descriptors include a statistical descriptor based on statistical mean, variance, skewness, and kurtosis; a directional descriptor based on a gradient histogram; a periodical descriptor based on auto-correlation; and a low-frequency statistical descriptor based on the Gaussian mixture model. We analyze three different types of remote sensing textures and contrast the results similarities and differences in three different analysis domains to demonstrate the validity of the texture descriptors. Moreover, we select three factors representing texture distributions in the wavelet transform domain to verify that the texture descriptors could be better to classify texture types. Consequently, the texture descriptors appropriate for describe remote sensing big data overall features with simple calculation and intuitive meaning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Avci, E.: Comparison of wavelet families for texure classification by using wavelet packet entropy adaptive network based fuzzy inference system. Appl. Soft Comput. 8(1), 7 (2008)

    Article  Google Scholar 

  2. Baraldi, A., Parmiggiani, F.: An investigation of the textural characteristics associated with gray level cooccurrence matrix statistical parameters. IEEE Trans. Geosci. Remote Sens. 33(2), 12 (1995)

    Google Scholar 

  3. Bharati, M.H., Liu, J.J., MacGregor, J.F.: Image texture analysis: methods and comparisons. Chemom. Intell. Lab. Syst. 72(1), 57–71 (2004)

    Article  Google Scholar 

  4. Bian, J., Yang, R., Yang, Y.: A novel vehicle’s shadow detection and removal algorithm. In: 2012 2nd International Conference on Consumer Electronics, Communications and Networks (CECNet), pp. 822–826 (2012)

  5. Cai, C., Zeng, K., Tang, L., Chen, D., Peng, W., Yan, J., Li, X.: Towards adaptive synchronization measurement of large-scale non-stationary non-linear data. Futur. Gener. Comput. Syst. 43–44, 110–119 (2015)

    Article  Google Scholar 

  6. Chen, D., Li, D., Xiong, M., Bao, H., Li, X.: Gpgpu-aided ensemble empirical-mode decomposition for eeg analysis during anesthesia. IEEE Trans. Inf. Technol. Biomed. 14(6), 1417–1427 (2010)

    Article  Google Scholar 

  7. Chen, Y., Nasrabadi, N.M., Tran, T.D.: Hyperspectral image classification via kernel sparse representation. IEEE Trans. Geosci. Remote Sens. 51(1), 217–231 (2013)

    Article  Google Scholar 

  8. Chen, L., Ma, Y., Liu, P., Wei, J., Jie, Wei, He, Jijun: A review of parallel computing for large-scale remote sensing image mosaicking. Clust. Comput. 18(2), 517–529 (2015)

    Article  Google Scholar 

  9. Clausi, D.A., Bing, Y.: Comparing cooccurrence probabilities and markov random fields for texture analysis of sar sea ice imagery. IEEE Trans. Geosci. Remote Sens. 42(1), 215–228 (2004)

    Article  Google Scholar 

  10. Dumitru, C., Datcu, M.: Information content of very high resolution sar images study of feature extraction and image parameters. IEEE Trans. Geosci. Remote Sens. 51(8), 20 (2013)

    Article  Google Scholar 

  11. Espinoza Molina, D.: Evaluation of bayesian despeckling and texture extraction methods based on gauss-markov and auto-binomial gibbs random fields: application to terrasar-x data. IEEE Trans. Geosci. Remote Sens. 50(5), 2001–2025 (2012)

    Article  Google Scholar 

  12. Hu, C., Xu, Z., Liu, Y., Mei, L., Chen, L., Luo, X.: Semantic link network-based model for organizing multimedia big data. IEEE Trans. Emerg. Top. Comput. 2(3), 376–387 (2014)

    Article  Google Scholar 

  13. Jang, S.-W., Jung, M.: An adaptive camera-selection algorithm to acquire higher-quality images. Clust. Comput. 18(2), 647–657 (2015)

    Article  Google Scholar 

  14. Jianguo, Lu, Li, D.: Bias correlation in a small sample from big data. IEEE Trans. Knowl. Date Eng. 25(11), 6 (2013)

    Google Scholar 

  15. Kandaswamy, U., Adjeroh, Donald A., Lee, M.C.: Efficient texture analysis of sar imagery. IEEE Trans. Geosci. Remote Sens. 43(9), 9 (2005)

  16. Kim, S.C., Kang, T.J.: Texture classification and segmentation using wavelet packet frame and gaussian mixture model. Pattern Recognit. 40(4), 15 (2007)

    Article  MATH  Google Scholar 

  17. Liu, L., Chen, Y., Li, Jing: Texture analysis methods used in remote sensing. Remote Sens. Technol. Appl. 18(06), 441–447 (2003)

    Google Scholar 

  18. Luo, X., Xu, Z., Yu, J., Chen, X.: Building association link network for semantic link on web resources. IEEE Trans. Autom. Sci. Eng. 8(3), 482–494 (2011)

    Article  Google Scholar 

  19. Ma, Li, Fan, J.: Texture Image Analysis. Science Press, Beijing (2009)

    Google Scholar 

  20. Materka, A., Strzelecki, M.: Texture Analysis Methods—A Review. COST B11 report. Brusssels, (1998)

  21. Portilla, J., Strela, V., Wainwright, M.J., Simoncelli, E.P.: Image denoising using scale mixtures of gaussians in the wavelet domain. IEEE Trans. Image Process. 12(11), 1338–1351 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  22. Portilla, Javier, Simoncelli, E.P.: A parametric texture model based on joint statistics of complex wavelet coefficients. Int. J. Comput. Vis. 40(1), 49–70 (2000)

    Article  MATH  Google Scholar 

  23. Qian, Y., Ye, M., Zhou, J.: Hyperspectral image classification based on structured sparse logistic regression and three-dimensional wavelet texture features. IEEE Trans. Geosci. Remote Sens. 51(4), 2276–2291 (2013)

    Article  Google Scholar 

  24. Satpathy, A., Jiang, X., Eng, H.-L.: Lbp-based edge-texture features for object recognition. IEEE Trans. Image Process. 23(5), 1953–1964 (2014)

  25. Sengur, A., Turkoglu, I., Ince, M.C.: Wavelet packet neural networks for texture classification. Expert Syst. Appl. 32(2), 7 (2007)

    Article  Google Scholar 

  26. Song, W., Liu, P., Wang, L., Lv, Ke: Intelligent processing of remote sensing big data: status and challenges. J. Eng. Stud. 6(3), 6 (2014)

    Google Scholar 

  27. Sourice, A., Plantier, G. Saumet, J.L.: Autocorrelation fitting for texture orientation estimation. In: 2003 International Conference on Image Processing (ICIP 2003) vol. 1, p. 4 (2003)

  28. Wang, L., Zhong, H., Ranjan, R., Zomaya, Albert, Liu, Peng: Estimation the statistical characteristic of remote sensing big data in the wavelet transform domain. IEEE Trans. Emerg. Top. Comput. 2(3), 14 (2014)

    Google Scholar 

  29. Wright, J., Yang, A.Y., Ganesh, A., Sastry, S.S., Yi, Ma.: Robust face recognition via sparse representation. IEEE Trans. Pattern Anal. Mach. Intell. 31(2), 210–227 (2009)

    Article  Google Scholar 

  30. Xu, Z., Lin, M., Liu, Y., Hu, C.: Video structural description: a semantic based model for representing and organizing video surveillance big data. In: 2013 IEEE 16th International Conference on Computational Science and Engineering (CSE), pp. 802–809 (2013)

  31. Xu, P., Liu, X., Yao, H., Zhang, Y., Tang, S.: Structured textons for texture representation. In: 2013 20th IEEE International Conference on Image Processing (ICIP), pp. 240–244 (2013)

  32. Xu, Z., Liu, Y., Yen, N., Mei, L., Luo, X., Wei, X., Hu, C.: Crowdsourcing based description of urban emergency events using social media big data. In: IEEE Transactions on Cloud Computing, 99, pp. 1–1 (2016)

  33. Yoo, T., Lee, G., Jung, K., Hong, YeongPyo, Lee, Sanghun: A study of row-direction reconstruction algorithm in depth map. Clust. Comput. 18(2), 721–731 (2015)

    Article  Google Scholar 

  34. Yulong, Qiao, Lixiang, W.: Hidden markov model based dynamic texture classification. IEEE Signal Process. Lett. 22(4), 509–512 (2015)

    Article  Google Scholar 

  35. Zheng, X., Wei, X., Luo, X., Liu, Y., Mei, L., Chuanping, H., Chen, Lan: Knowle: A semantic link network based system for organizing large scale online news events. Future Gener. Comput. Syst. 4344, 40–50 (2015)

    Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (Nos. 41471368 and 41571413).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weijing Song.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Song, W. & Liu, P. Link the remote sensing big data to the image features via wavelet transformation. Cluster Comput 19, 793–810 (2016). https://doi.org/10.1007/s10586-016-0569-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-016-0569-6

Keywords

Navigation