Skip to main content

Advertisement

Log in

Precision oncology for breast cancer through clinical trials

  • Review
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

Precision treatment for breast cancers has made several notable advances in recent decades, but challenges of tumor heterogeneity, drug resistance, and aggressive recurrence and metastases remain. To meet and overcome these challenges, we must refine our understanding of breast subtypes and treatment biomarkers according to the knowledge afforded across the spectrum of ‘omics assays. A critical aspect of harnessing this knowledge into actionable biomarkers for treatment decision relies on our ability to integrate knowledge across data types and leverage our insight in evidence-based clinical trials. We review recent advances in cutting-edge clinical trials for precision treatment of breast cancer, including chemotherapies, targeted therapies, immunotherapies, and combination therapies. We comment on promising future areas of development for this exciting point in precision breast cancer research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AKT1:

AKT serine/threonine kinase 1

ATM:

Ataxia telangiesctasia mutated serine/threonine kinase

ATR:

Ataxia telangiesctasia and rad3-related protein

BRCA1:

BRCA1 DNA repair associated

BRCA2:

BRCA2 DNA repair associated

CHK1:

Checkpoint kinase 1

CHK2:

Checkpoint kinase 2

CLIA:

Clinical laboratory improvement act

ctDNA:

Circulating tumor DNA

ER:

Estrogen receptor 1

HR+:

Hormone receptor positive

HER2:

Human epidermal growth factor receptor 2

MSI:

Microsatellite instability

PARP1:

Poly(ADP-Ribose) polymerase

PTEN:

Phosphatase and tensin homolog

TNBC:

Triple negative breast cancer

WEE1:

WEE1 G2 checkpoint kinase

References

  1. Cancer Genome Atlas Network (2012) Comprehensive molecular portraits of human breast tumours. Nature 490(7418):61–70

    Article  Google Scholar 

  2. Nik-Zainal S, Davies H, Staaf J, Ramakrishna M, Glodzik D, Zou X et al (2016) Landscape of somatic mutations in 560 breast cancer whole-genome sequences. Nature 534(7605):47–54

    Article  CAS  Google Scholar 

  3. Jiang Y-Z, Ma D, Suo C, Shi J, Xue M, Hu X et al (2019 Mar) Genomic and transcriptomic landscape of triple-negative breast cancers: subtypes and treatment strategies. Cancer Cell 35(3):428-440.e5

    Article  CAS  Google Scholar 

  4. Zardavas D, Maetens M, Irrthum A, Goulioti T, Engelen K, Fumagalli D et al (2014 Nov) The AURORA initiative for metastatic breast cancer. Br J Cancer 111(10):1881–7

    Article  CAS  Google Scholar 

  5. Brown D, Smeets D, Székely B, Larsimont D, Szász AM, Adnet P-Y et al (2017 Apr 28) Phylogenetic analysis of metastatic progression in breast cancer using somatic mutations and copy number aberrations. Nat Commun 8(1):14944

    Article  Google Scholar 

  6. De Mattos-Arruda L, Sammut S-J, Ross EM, Bashford-Rogers R, Greenstein E, Markus H et al (2019) The genomic and immune landscapes of lethal metastatic breast cancer. Cell Rep 27(9):2690–2708

    Article  Google Scholar 

  7. Moasser MM (2007 Oct 4) The oncogene HER2: its signaling and transforming functions and its role in human cancer pathogenesis. Oncogene 26(45):6469–87

    Article  CAS  Google Scholar 

  8. Wilson FR, Coombes ME, Wylie Q, Yurchenko M, Brezden-Masley C, Hutton B et al (2017) Herceptin® (trastuzumab) in HER2-positive early breast cancer: protocol for a systematic review and cumulative network meta-analysis. Syst Rev 6(1):196

    Article  Google Scholar 

  9. Early Breast Cancer Trialists’ Collaborative Group (1988) Effects of adjuvant tamoxifen and of cytotoxic therapy on mortality in early breast cancer. An overview of 61 randomized trials among 28,896 women. N Engl J Med 319(26):1681–1692

    Article  Google Scholar 

  10. Redman MW, Allegra CJ (2015 Oct) The master protocol concept. Semin Oncol 42(5):724–30

    Article  Google Scholar 

  11. Hirakawa A, Asano J, Sato H, Teramukai S (2018 Dec) Master protocol trials in oncology: review and new trial designs. Contemp Clin Trials Commun 12:1–8

    Article  Google Scholar 

  12. Esserman LJ, Berry DA, DeMichele A, Carey L, Davis SE, Buxton M et al (2012) Pathologic complete response predicts recurrence-free survival more effectively by cancer subset: results from the I-SPY 1 TRIAL–CALGB 150007/150012, ACRIN 6657. J Clin Oncol Off J Am Soc Clin Oncol 30(26):3242–9

    Article  Google Scholar 

  13. Barker AD, Sigman CC, Kelloff GJ, Hylton NM, Berry DA, Esserman LJ (2009) I-SPY 2: an adaptive breast cancer trial design in the setting of neoadjuvant chemotherapy. Clin Pharmacol Ther 86(1):97–100

    Article  CAS  Google Scholar 

  14. Davies H, Glodzik D, Morganella S, Yates LR, Staaf J, Zou X et al (2017) HRDetect is a predictor of BRCA1 and BRCA2 deficiency based on mutational signatures. Nat Med 23(4):517–25

    Article  CAS  Google Scholar 

  15. Peng G, Chun-Jen Lin C, Mo W, Dai H, Park Y-Y, Kim SM et al (2014) Genome-wide transcriptome profiling of homologous recombination DNA repair. Nat Commun 5(1):3361

    Article  Google Scholar 

  16. McGrail DJ, Lin CC-J, Garnett J, Liu Q, Mo W, Dai H et al (2017) Improved prediction of PARP inhibitor response and identification of synergizing agents through use of a novel gene expression signature generation algorithm. Npj Syst Biol Appl 3(1):8

    Article  Google Scholar 

  17. Pitt JM, Vétizou M, Daillère R, Roberti MP, Yamazaki T, Routy B et al (2016) Resistance mechanisms to immune-checkpoint blockade in cancer: tumor-intrinsic and -extrinsic factors. Immunity 44(6):1255–69

    Article  CAS  Google Scholar 

  18. Chang C-H, Pearce EL (2016) Emerging concepts of T cell metabolism as a target of immunotherapy. Nat Immunol 17(4):364–8

    Article  CAS  Google Scholar 

  19. Pauken KE, Sammons MA, Odorizzi PM, Manne S, Godec J, Khan O et al (2016) Epigenetic stability of exhausted T cells limits durability of reinvigoration by PD-1 blockade. Science 354(6316):1160–5

    Article  CAS  Google Scholar 

  20. Haddad R, Saldanha-Araujo F (2014) Mechanisms of T-cell immunosuppression by mesenchymal stromal cells: what do we know so far? BioMed Res Int 2014:216806

    PubMed  PubMed Central  Google Scholar 

  21. Stromnes IM, Greenberg PD, Hingorani SR (2014 Oct 15) Molecular pathways: myeloid complicity in cancer. Clin Cancer Res Off J Am Assoc Cancer Res 20(20):5157–70

    Article  CAS  Google Scholar 

  22. Chou CK, Schietinger A, Liggitt HD, Tan X, Funk S, Freeman GJ et al (2012) Cell-intrinsic abrogation of TGF-β signaling delays but does not prevent dysfunction of self/tumor-specific CD8 T cells in a murine model of autochthonous prostate cancer. J Immunol Baltim Md 1950 89(8):3936–3946

    Google Scholar 

  23. Soliman H, Rawal B, Fulp J, Lee J-H, Lopez A, Bui MM et al (2013) Analysis of indoleamine 2–3 dioxygenase (IDO1) expression in breast cancer tissue by immunohistochemistry. Cancer Immunol Immunother CII 62(5):829–37

    Article  CAS  Google Scholar 

  24. Kuol N, Stojanovska L, Apostolopoulos V, Nurgali K (2018 Feb) Crosstalk between cancer and the neuro-immune system. J Neuroimmunol 15(315):15–23

    Article  Google Scholar 

  25. Gajewski TF, Schreiber H, Fu Y-X (2013) Innate and adaptive immune cells in the tumor microenvironment. Nat Immunol 14(10):1014–22

    Article  CAS  Google Scholar 

  26. Whiteside TL (2008 Oct 6) The tumor microenvironment and its role in promoting tumor growth. Oncogene. 27(45):5904–12

    Article  CAS  Google Scholar 

  27. Berger AC, Korkut A, Kanchi RS, Hegde AM, Lenoir W, Liu W et al (2018) A comprehensive pan-cancer molecular study of gynecologic and breast cancers. Cancer Cell 33(4):690-705.e9

    Article  CAS  Google Scholar 

  28. Olivier M, Asmis R, Hawkins GA, Howard TD, Cox LA (2019 Sep 26) The need for multi-omics biomarker signatures in precision medicine. Int J Mol Sci 20(19):4781

    Article  CAS  Google Scholar 

  29. Mitri ZI, Parmar S, Johnson B, Kolodzie A, Keck JM, Morris M et al (2018) Implementing a comprehensive translational oncology platform: from molecular testing to actionability. J Transl Med 16(1):358

    Article  CAS  Google Scholar 

  30. Prasad V (2016) Perspective: the precision-oncology illusion. Nature 537(7619):S63

    Article  CAS  Google Scholar 

  31. Meric-Bernstam F, Brusco L, Shaw K, Horombe C, Kopetz S, Davies MA et al (2015) Feasibility of large-scale genomic testing to facilitate enrollment onto genomically matched clinical trials. J Clin Oncol Off J Am Soc Clin Oncol 33(25):2753–62

    Article  Google Scholar 

  32. Flaherty KT, Gray R, Chen A, Li S, Patton D, Hamilton SR et al (2020) The molecular analysis for therapy choice (NCI-MATCH) trial: lessons for genomic trial design. J Natl Cancer Inst 112(10):1021–9

    Article  Google Scholar 

  33. Ng PK-S, Li J, Jeong KJ, Shao S, Chen H, Tsang YH et al (2018) Systematic functional annotation of somatic mutations in cancer. Cancer Cell 33(3):450–462

    Article  CAS  Google Scholar 

  34. Tsang YH, Dogruluk T, Tedeschi PM, Wardwell-Ozgo J, Lu H, Espitia M et al (2016) Functional annotation of rare gene aberration drivers of pancreatic cancer. Nat Commun 25(7):10500

    Article  Google Scholar 

  35. Ellsworth RE, Blackburn HL, Shriver CD, Soon-Shiong P, Ellsworth DL (2017) Molecular heterogeneity in breast cancer: State of the science and implications for patient care. Semin Cell Dev Biol 64:65–72

    Article  CAS  Google Scholar 

  36. Turashvili G, Brogi E (2017) Tumor heterogeneity in breast cancer. Front Med 4:227

    Article  Google Scholar 

  37. Pectasides E, Stachler MD, Derks S, Liu Y, Maron S, Islam M et al (2018) Genomic heterogeneity as a barrier to precision medicine in gastroesophageal adenocarcinoma. Cancer Discov 8(1):37–48

    Article  CAS  Google Scholar 

  38. Ward HW (1973 Jan 6) Anti-oestrogen therapy for breast cancer: a trial of tamoxifen at two dose levels. Br Med J 1(5844):13–4

    Article  CAS  Google Scholar 

  39. Lerner HJ, Band PR, Israel L, Leung BS (1976) Phase II study of tamoxifen: report of 74 patients with stage IV breast cancer. Cancer Treat Rep 60(10):1431–5

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiu Huen Tsang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Presented at the 8th International Cancer Metastasis Congress in San Francisco, CA, USA from October 25–27, 2019 (http://www.cancermetastasis.org). To be published in an upcoming Special Issue of Clinical and Experimental Metastasis: Novel Frontiers in Cancer Metastasis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blucher, A.S., Mills, G.B. & Tsang, Y.H. Precision oncology for breast cancer through clinical trials. Clin Exp Metastasis 39, 71–78 (2022). https://doi.org/10.1007/s10585-021-10092-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-021-10092-0

Keywords

Navigation