Skip to main content

Advertisement

Log in

Molecular insights into the interplay between adiposity, breast cancer and bone metastasis

  • Review
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

Cancer is a complex disease, with various pre-existing health ailments enhancing its pathology. In cancer, the extracellular environment contains various intrinsic physiological factors whose levels are altered with aging and pre-existing conditions. In obesity, the tumor microenvironment and metastases are enriched with factors that are both derived locally, and from other physiological compartments. Similarly, in obesity, the cancer cell environment both at the site of origin and at the secondary site i.e., metastatic niche, contains significantly more phenotypically-altered adipocytes than that of un-obese cancer patients. Indeed, obesity has been linked with cancer progression, metastasis, and therapy resistance. Adipocytes not only interact with tumor cells, but also with adjacent stromal cells at primary and metastatic sites. This review emphasizes the importance of bidirectional interactions between adipocytes and breast tumor cells in breast cancer progression and its bone metastases. This paper not only chronicles the role of various adipocyte-derived factors in tumor growth, but also describes the significance of adipocyte-derived bone metastatic factors in the development of bone metastasis of breast cancer. It provides a molecular view of the interplay between the adipocytes and tumor cells involved in breast cancer bone metastasis. However, more research is needed to determine if targeting cancer-associated adipocytes holds promise as a potential therapeutic approach for breast cancer bone metastasis treatment.

Graphic abstract

Interplay between adipocytes and breast cancer cells at primary cancer site and metastatic bone microenvironment. AMSC Adipose-derived mesenchymal stem cell, CAA Cancer associated adipocytes, CAF Cancer associated fibroblast, BMSC Bone marrow derived mesenchymal stem cell, BMA Bone marrow adipocyte.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Andò S et al (2019) Obesity, leptin and breast cancer: epidemiological evidence and proposed mechanisms. Cancers 11(1):62

    PubMed Central  Google Scholar 

  2. Ferlay J et al (2015) Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 136(5):E359–E386

    CAS  PubMed  Google Scholar 

  3. Becker S (2015) A historic and scientific review of breast cancer: the next global healthcare challenge. Int J Gynaecol Obstet 131(Suppl 1):S36–S39

    PubMed  Google Scholar 

  4. Yu T, Di G (2017) Role of tumor microenvironment in triple-negative breast cancer and its prognostic significance. Chinese J Cancer Res 29(3):237–252

    CAS  Google Scholar 

  5. Harbeck N et al (2019) Breast cancer. Nat Rev Dis Primers 5(1):66

    PubMed  Google Scholar 

  6. Hiraga T (2019) Bone metastasis: Interaction between cancer cells and bone microenvironment. J Oral Biosci 61(2):95–98

    PubMed  Google Scholar 

  7. Mundy GR (2002) Metastasis to bone: causes, consequences and therapeutic opportunities. Nat Rev Cancer 2(8):584–593

    CAS  PubMed  Google Scholar 

  8. Graham N, Qian B-Z (2018) Mesenchymal stromal cells: emerging roles in bone metastasis. Int J Mol Sci 19(4):1121

    PubMed Central  Google Scholar 

  9. Hiraga T (2018) Hypoxic microenvironment and metastatic bone disease. Int J Mol Sci 19(11):3523

    PubMed Central  Google Scholar 

  10. Pérez-Hernández AI et al (2014) Mechanisms linking excess adiposity and carcinogenesis promotion. Front Endocrinol 5:65

    Google Scholar 

  11. Calle EE, Thun MJ (2004) Obesity and cancer. Oncogene 23(38):6365–6378

    CAS  PubMed  Google Scholar 

  12. Pettersson A, Tamimi RM (2012) Breast fat and breast cancer. Breast Cancer Res Treat 135(1):321–323

    PubMed  PubMed Central  Google Scholar 

  13. Chan DS et al (2014) Body mass index and survival in women with breast cancer-systematic literature review and meta-analysis of 82 follow-up studies. Ann Oncol 25(10):1901–1914

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Emaus A et al (2010) Metabolic profile, physical activity, and mortality in breast cancer patients. Breast Cancer Res Treat 121(3):651–660

    PubMed  Google Scholar 

  15. Greenberg AS, Obin MS (2006) Obesity and the role of adipose tissue in inflammation and metabolism. Am J Clin Nutr 83(2):461S-465S

    CAS  PubMed  Google Scholar 

  16. Soysal SD, Tzankov A, Muenst SE (2015) Role of the tumor microenvironment in breast cancer. Pathobiology 82(3–4):142–152

    CAS  PubMed  Google Scholar 

  17. Wang YY et al (2012) Adipose tissue and breast epithelial cells: a dangerous dynamic duo in breast cancer. Cancer Lett 324(2):142–151

    CAS  PubMed  Google Scholar 

  18. Park J et al (2014) Obesity and cancer–mechanisms underlying tumour progression and recurrence. Nat Rev Endocrinol 10(8):455–465

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Wang YX et al (2019) Friend or foe: multiple roles of adipose tissue in cancer formation and progression. J Cell Physiol 234(12):21436–21449

    CAS  PubMed  Google Scholar 

  20. Luo L, Liu M (2016) Adipose tissue in control of metabolism. J Endocrinol 231(3):R77–R99

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Duong MN et al (2017) The fat and the bad: mature adipocytes, key actors in tumor progression and resistance. Oncotarget 8(34):57622–57641

    PubMed  PubMed Central  Google Scholar 

  22. Balaban S et al (2017) Adipocyte lipolysis links obesity to breast cancer growth: adipocyte-derived fatty acids drive breast cancer cell proliferation and migration. Cancer Metab 5:1

    PubMed  PubMed Central  Google Scholar 

  23. Atoum MF, Alzoughool F, Al-Hourani H (2020) Linkage between obesity leptin and breast cancer. Breast Cancer 14:1178223419898458

    PubMed  PubMed Central  Google Scholar 

  24. Lorincz AM, Sukumar S (2006) Molecular links between obesity and breast cancer. Endocr Relat Cancer 13(2):279–292

    CAS  PubMed  Google Scholar 

  25. Munsell MF et al (2014) Body mass index and breast cancer risk according to postmenopausal estrogen-progestin use and hormone receptor status. Epidemiol Rev 36(1):114–136

    PubMed  PubMed Central  Google Scholar 

  26. Esquivel-Velázquez M et al (2015) The role of cytokines in breast cancer development and progression. J interferon Cytokine Res 35(1):1–16

    PubMed  PubMed Central  Google Scholar 

  27. Cabia B et al (2016) A role for novel adipose tissue-secreted factors in obesity-related carcinogenesis. Obes Rev 17(4):361–376

    CAS  PubMed  Google Scholar 

  28. Grossmann ME et al (2010) Obesity and breast cancer: status of leptin and adiponectin in pathological processes. Cancer Metastasis Rev 29(4):641–653

    CAS  PubMed  Google Scholar 

  29. Dirat BA et al (2010) Unraveling the obesity and breast cancer links: a role for cancer-associated adipocytes? Endocr Dev 19:45–52

    PubMed  Google Scholar 

  30. Wu Q et al (2019) Cancer-associated adipocytes: key players in breast cancer progression. J Hematol Oncol 12(1):95

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Dirat B et al (2011) Cancer-associated adipocytes exhibit an activated phenotype and contribute to breast cancer invasion. Cancer Res 71(7):2455–2465

    CAS  PubMed  Google Scholar 

  32. Nickel A et al (2018) Adipocytes induce distinct gene expression profiles in mammary tumor cells and enhance inflammatory signaling in invasive breast cancer cells. Sci Rep 8(1):9482–9482

    PubMed  PubMed Central  Google Scholar 

  33. Wang YY et al (2017) Mammary adipocytes stimulate breast cancer invasion through metabolic remodeling of tumor cells. JCI Insight 2(4):e87489

    PubMed  PubMed Central  Google Scholar 

  34. D’Esposito V et al (2012) Adipocyte-released insulin-like growth factor-1 is regulated by glucose and fatty acids and controls breast cancer cell growth in vitro. Diabetologia 55(10):2811–2822

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Wang C et al (2015) Human adipocytes stimulate invasion of breast cancer MCF-7 cells by secreting IGFBP-2. PLoS ONE 10(3):e0119348–e0119348

    PubMed  PubMed Central  Google Scholar 

  36. He JY et al (2018) Adipocyte-derived IL-6 and leptin promote breast cancer metastasis via upregulation of Lysyl hydroxylase-2 expression. Cell Commun Signal 16(1):100

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Rowan BG et al (2014) Human adipose tissue-derived stromal/stem cells promote migration and early metastasis of triple negative breast cancer xenografts. PLoS ONE 9(2):e89595

    PubMed  PubMed Central  Google Scholar 

  38. Delort L et al (2013) Reciprocal interactions between breast tumor and its adipose microenvironment based on a 3D adipose equivalent model. PLoS ONE 8(6):e66284

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Ritter A et al (2015) Characterization of adipose-derived stem cells from subcutaneous and visceral adipose tissues and their function in breast cancer cells. Oncotarget 6(33):34475–34493

    PubMed  PubMed Central  Google Scholar 

  40. Li K et al (2016) Leptin promotes breast cancer cell migration and invasion via IL-18 expression and secretion. Int J Oncol 48(6):2479–2487

    CAS  PubMed  Google Scholar 

  41. Dos Santos E et al (2008) Adiponectin mediates an antiproliferative response in human MDA-MB 231 breast cancer cells. Oncol Rep 20(4):971–977

    PubMed  Google Scholar 

  42. Esquivel-Velazquez M et al (2015) The role of cytokines in breast cancer development and progression. J Interferon Cytokine Res 35(1):1–16

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Iyengar P et al (2005) Adipocyte-derived collagen VI affects early mammary tumor progression in vivo, demonstrating a critical interaction in the tumor/stroma microenvironment. J Clin Investig 115(5):1163–1176

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Christopoulos PF, Msaouel P, Koutsilieris M (2015) The role of the insulin-like growth factor-1 system in breast cancer. Molecular Cancer 14:43–43

    PubMed  PubMed Central  Google Scholar 

  45. Liu E, Samad F, Mueller BM (2013) Local adipocytes enable estrogen-dependent breast cancer growth: role of leptin and aromatase. Adipocyte 2(3):165–169

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Grodin JM, Siiteri PK, MacDonald PC (1973) Source of estrogen production in postmenopausal women. J Clin Endocrinol Metab 36(2):207–214

    CAS  PubMed  Google Scholar 

  47. Simpson ER (2003) Sources of estrogen and their importance. J Steroid Biochem Mol Biol 86(3–5):225–230

    CAS  PubMed  Google Scholar 

  48. Miah S et al (2019) Estrogen receptor signaling regulates the expression of the breast tumor kinase in breast cancer cells. BMC Cancer 19(1):78

    PubMed  PubMed Central  Google Scholar 

  49. Rybinska I et al (2020) Adipocytes in breast cancer, the thick and the thin. Cells 9(3):560

    CAS  PubMed Central  Google Scholar 

  50. Cleland WH, Mendelson CR, Simpson ER (1983) Aromatase activity of membrane fractions of human adipose tissue stromal cells and adipocytes. Endocrinology 113(6):2155–2160

    CAS  PubMed  Google Scholar 

  51. Haynes BP et al (2010) Intratumoral estrogen disposition in breast cancer. Clin Cancer Res 16(6):1790–1801

    CAS  PubMed  Google Scholar 

  52. Díaz-Cruz ES, Shapiro CL, Brueggemeier RW (2005) Cyclooxygenase inhibitors suppress aromatase expression and activity in breast cancer cells. J Clin Endocrinol Metab 90(5):2563–2570

    PubMed  Google Scholar 

  53. Morris PG et al (2011) Inflammation and increased aromatase expression occur in the breast tissue of obese women with breast cancer. Cancer Prev Res 4(7):1021–1029

    CAS  Google Scholar 

  54. Kennecke H et al (2010) Metastatic behavior of breast cancer subtypes. J Clin Oncol 28(20):3271–3277

    PubMed  Google Scholar 

  55. Amanatullah DF et al (2017) Local estrogen axis in the human bone microenvironment regulates estrogen receptor-positive breast cancer cells. Breast Cancer Res 19(1):121

    PubMed  PubMed Central  Google Scholar 

  56. Frost AR et al (2012) The influence of the cancer microenvironment on the process of metastasis. Int J Breast Cancer 2012:756257

    PubMed  PubMed Central  Google Scholar 

  57. Guyenet SJ, Schwartz MW (2012) Clinical review: regulation of food intake, energy balance, and body fat mass: implications for the pathogenesis and treatment of obesity. J Clin Endocrinol Metab 97(3):745–755

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Hu X et al (2002) Leptin–a growth factor in normal and malignant breast cells and for normal mammary gland development. J Natl Cancer Inst 94(22):1704–1711

    CAS  PubMed  Google Scholar 

  59. Sánchez-Jiménez F et al (2019) Obesity and breast cancer: role of leptin. Front Oncol 9:596–596

    PubMed  PubMed Central  Google Scholar 

  60. Ishikawa M, Kitayama J, Nagawa H (2004) Enhanced expression of leptin and leptin receptor (OB-R) in human breast cancer. Clin Cancer Res 10(13):4325–4331

    CAS  PubMed  Google Scholar 

  61. Wu MH et al (2009) Circulating levels of leptin, adiposity and breast cancer risk. Br J Cancer 100(4):578–582

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Pan H et al (2018) Association between serum leptin levels and breast cancer risk: an updated systematic review and meta-analysis. Medicine 97(27):e11345–e11345

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Choi J, Cha YJ, Koo JS (2018) Adipocyte biology in breast cancer: from silent bystander to active facilitator. Prog Lipid Res 69:11–20

    CAS  PubMed  Google Scholar 

  64. Yin N et al (2004) Molecular mechanisms involved in the growth stimulation of breast cancer cells by leptin. Cancer Res 64(16):5870–5875

    CAS  PubMed  Google Scholar 

  65. Zhou W, Guo S, Gonzalez-Perez RR (2011) Leptin pro-angiogenic signature in breast cancer is linked to IL-1 signalling. Br J Cancer 104(1):128–137

    CAS  PubMed  Google Scholar 

  66. Gonzalez-Perez RR et al (2010) Leptin upregulates VEGF in breast cancer via canonic and non-canonical signalling pathways and NFkappaB/HIF-1alpha activation. Cell Signal 22(9):1350–1362

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Bowers LW et al (2018) Leptin signaling mediates obesity-associated CSC enrichment and EMT in preclinical TNBC models. Mol Cancer Res 16(5):869–879

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Templeton ZS et al (2015) Breast cancer cell colonization of the human bone marrow adipose tissue niche. Neoplasia 17(12):849–861

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Himbert C et al (2017) Signals from the adipose microenvironment and the obesity-cancer link-a systematic review. Cancer Prev Res 10(9):494–506

    CAS  Google Scholar 

  70. Stern JH, Rutkowski JM, Scherer PE (2016) Adiponectin, leptin, and fatty acids in the maintenance of metabolic homeostasis through adipose tissue crosstalk. Cell Metab 23(5):770–784

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Güven HE et al (2018) Adiponectin: a predictor for breast cancer survival? Eur J Breast Health 15(1):13–17

    PubMed  PubMed Central  Google Scholar 

  72. Dieudonne MN et al (2006) Adiponectin mediates antiproliferative and apoptotic responses in human MCF7 breast cancer cells. Biochem Biophys Res Commun 345(1):271–279

    CAS  PubMed  Google Scholar 

  73. Mauro L et al (2014) Evidences that estrogen receptor alpha interferes with adiponectin effects on breast cancer cell growth. Cell Cycle 13(4):553–564

    CAS  PubMed  Google Scholar 

  74. Masjedi A et al (2018) The significant role of interleukin-6 and its signaling pathway in the immunopathogenesis and treatment of breast cancer. Biomed Pharmacother 108:1415–1424

    CAS  PubMed  Google Scholar 

  75. Kershaw EE, Flier JS (2004) Adipose tissue as an endocrine organ. J Clin Endocrinol Metab 89(6):2548–2556

    CAS  PubMed  Google Scholar 

  76. Kim HS et al (2018) IL-6-mediated cross-talk between human preadipocytes and ductal carcinoma in situ in breast cancer progression. J Exp Clin Cancer Res 37(1):200

    PubMed  PubMed Central  Google Scholar 

  77. Gyamfi J et al (2018) Interleukin-6/STAT3 signalling regulates adipocyte induced epithelial-mesenchymal transition in breast cancer cells. Sci Rep 8(1):8859

    PubMed  PubMed Central  Google Scholar 

  78. Liu S et al (2018) HER2 overexpression triggers an IL1α proinflammatory circuit to drive tumorigenesis and promote chemotherapy resistance. Cancer Res 78(8):2040–2051

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Cruceriu D et al (2020) The dual role of tumor necrosis factor-alpha (TNF-α) in breast cancer: molecular insights and therapeutic approaches. Cell Oncol 43(1):1–18

    CAS  Google Scholar 

  80. Gui Y et al (2017) The association between obesity related adipokines and risk of breast cancer: a meta-analysis. Oncotarget 8(43):75389–75399

    PubMed  PubMed Central  Google Scholar 

  81. Rubio MF et al (2006) TNF-alpha enhances estrogen-induced cell proliferation of estrogen-dependent breast tumor cells through a complex containing nuclear factor-kappa B. Oncogene 25(9):1367–1377

    CAS  PubMed  Google Scholar 

  82. Rivas MA et al (2008) TNF alpha acting on TNFR1 promotes breast cancer growth via p42/P44 MAPK, JNK, Akt and NF-kappa B-dependent pathways. Exp Cell Res 314(3):509–529

    CAS  PubMed  Google Scholar 

  83. Kim S et al (2008) Berberine suppresses TNF-alpha-induced MMP-9 and cell invasion through inhibition of AP-1 activity in MDA-MB-231 human breast cancer cells. Molecules 13(12):2975–2985

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Kang J-H, Yu B-Y, Youn D-S (2007) Relationship of serum adiponectin and resistin levels with breast cancer risk. J Korean Med Sci 22(1):117–121

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Acquarone E et al (2019) Resistin: a reappraisal. Mech Ageing Dev 178:46–63

    CAS  PubMed  Google Scholar 

  86. Lee JO et al (2016) Resistin, a fat-derived secretory factor, promotes metastasis of MDA-MB-231 human breast cancer cells through ERM activation. Sci Rep 6:18923

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Wang CH et al (2018) Resistin facilitates breast cancer progression via TLR4-mediated induction of mesenchymal phenotypes and stemness properties. Oncogene 37(5):589–600

    CAS  PubMed  Google Scholar 

  88. Dalamaga M et al (2013) Serum resistin: a biomarker of breast cancer in postmenopausal women? Association with clinicopathological characteristics, tumor markers, inflammatory and metabolic parameters. Clin Biochem 46(7–8):584–590

    CAS  PubMed  Google Scholar 

  89. Ferry G et al (2003) Autotaxin is released from adipocytes, catalyzes lysophosphatidic acid synthesis, and activates preadipocyte proliferation. Up-regulated expression with adipocyte differentiation and obesity. J Biol Chem 278(20):18162–18169

    CAS  PubMed  Google Scholar 

  90. D’Souza K et al (2017) Autotaxin is regulated by glucose and insulin in adipocytes. Endocrinology 158(4):791–803

    CAS  PubMed  Google Scholar 

  91. Schmid R et al (2018) ADSCs and adipocytes are the main producers in the autotaxin-lysophosphatidic acid axis of breast cancer and healthy mammary tissue in vitro. BMC Cancer 18(1):1273

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Meng G et al (2017) Implications for breast cancer treatment from increased autotaxin production in adipose tissue after radiotherapy. FASEB J 31(9):4064–4077

    CAS  PubMed  Google Scholar 

  93. Shao Y et al (2019) Serum ATX as a novel biomarker for breast cancer. Medicine 98(13):e14973–e14973

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Davison Z et al (2011) Insulin-like growth factor-dependent proliferation and survival of triple-negative breast cancer cells: implications for therapy. Neoplasia 13(6):504–515

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Iida M et al (2019) Compensatory role of insulin-like growth factor 1 receptor in estrogen receptor signaling pathway and possible therapeutic target for hormone therapy-resistant breast cancer. Breast Cancer 26(3):272–281

    PubMed  Google Scholar 

  96. Guaita-Esteruelas S et al (2017) Exogenous FABP4 increases breast cancer cell proliferation and activates the expression of fatty acid transport proteins. Mol Carcinog 56(1):208–217

    CAS  PubMed  Google Scholar 

  97. Hao J et al (2018) Circulating adipose fatty acid binding protein is a new link underlying obesity-associated breast/mammary tumor development. Cell Metab 28(5):689–705

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Hancke K et al (2010) Adipocyte fatty acid-binding protein as a novel prognostic factor in obese breast cancer patients. Breast Cancer Res Treat 119(2):367–377

    CAS  PubMed  Google Scholar 

  99. Lee YC et al (2011) High visfatin expression in breast cancer tissue is associated with poor survival. Cancer Epidemiol Biomarkers Prev 20(9):1892–1901

    CAS  PubMed  Google Scholar 

  100. Park J, Scherer PE (2012) Adipocyte-derived endotrophin promotes malignant tumor progression. J Clin Investig 122(11):4243–4256

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Bu D et al (2019) Human endotrophin as a driver of malignant tumor growth. JCI Insight 5(9):e125094

    Google Scholar 

  102. Kaji H (2016) Adipose tissue-derived plasminogen activator inhibitor-1 function and regulation. Compr Physiol 6(4):1873–1896

    PubMed  Google Scholar 

  103. Carter JC, Church FC (2009) Obesity and breast cancer: the roles of peroxisome proliferator-activated receptor-γ and plasminogen activator inhibitor-1. PPAR Res 2009:345320–345320

    PubMed  PubMed Central  Google Scholar 

  104. Ferroni P et al (2014) Plasma plasminogen activator inhibitor-1 (PAI-1) levels in breast cancer - relationship with clinical outcome. Anticancer Res 34(3):1153–1161

    PubMed  Google Scholar 

  105. Lopes-Coelho F, Gouveia-Fernandes S, Serpa J (2018) Metabolic cooperation between cancer and non-cancerous stromal cells is pivotal in cancer progression. Tumour Biol 40(2):1010428318756203

    PubMed  Google Scholar 

  106. Andarawewa KL et al (2005) Stromelysin-3 is a potent negative regulator of adipogenesis participating to cancer cell-adipocyte interaction/crosstalk at the tumor invasive front. Cancer Res 65(23):10862–10871

    CAS  PubMed  Google Scholar 

  107. Meng L et al (2001) Tumor necrosis factor alpha and interleukin 11 secreted by malignant breast epithelial cells inhibit adipocyte differentiation by selectively down-regulating CCAAT/enhancer binding protein alpha and peroxisome proliferator-activated receptor gamma: mechanism of desmoplastic reaction. Cancer Res 61(5):2250–2255

    CAS  PubMed  Google Scholar 

  108. Wang F et al (2014) Mammary fat of breast cancer: gene expression profiling and functional characterization. PLoS ONE 9(10):e109742–e109742

    PubMed  PubMed Central  Google Scholar 

  109. Tan J et al (2011) Adipocyte is a non-trivial, dynamic partner of breast cancer cells. Int J Dev Biol 55(7–9):851–859

    PubMed  Google Scholar 

  110. Bochet L et al (2013) Adipocyte-derived fibroblasts promote tumor progression and contribute to the desmoplastic reaction in breast cancer. Cancer Res 73(18):5657–5668

    CAS  PubMed  Google Scholar 

  111. Blücher C, Stadler SC (2017) Obesity and breast cancer: current insights on the role of fatty acids and lipid metabolism in promoting breast cancer growth and progression. Front Endocrinol 8:293–293

    Google Scholar 

  112. Martinez-Outschoorn UE et al (2011) Energy transfer in “parasitic” cancer metabolism: mitochondria are the powerhouse and Achilles’ heel of tumor cells. Cell Cycle 10(24):4208–4216

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Singh R et al (2016) Increased expression of beige/brown adipose markers from host and breast cancer cells influence xenograft formation in mice. Mol Cancer Res 14(1):78–92

    CAS  PubMed  Google Scholar 

  114. Agustsson T et al (2007) Mechanism of increased lipolysis in cancer cachexia. Cancer Res 67(11):5531–5537

    CAS  PubMed  Google Scholar 

  115. Sun X et al (2020) Fat wasting is damaging: role of adipose tissue in cancer-associated cachexia. Front Cell Dev Biol 8:33–33

    PubMed  PubMed Central  Google Scholar 

  116. Bandyopadhayaya S, Ford B, Mandal CC (2020) Cold-hearted: a case for cold stress in cancer risk. J Therm Biol 91:102608

    CAS  PubMed  Google Scholar 

  117. Argilés JM et al (2014) Cancer cachexia: understanding the molecular basis. Nat Rev Cancer 14(11):754–762

    PubMed  Google Scholar 

  118. Dalal S (2019) Lipid metabolism in cancer cachexia. Ann Palliat Med 8(1):13–23

    PubMed  Google Scholar 

  119. Ohno H et al (2012) PPARγ agonists induce a white-to-brown fat conversion through stabilization of PRDM16 protein. Cell Metab 15(3):395–404

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Seale P et al (2007) Transcriptional control of brown fat determination by PRDM16. Cell Metab 6(1):38–54

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Karamanlidis G et al (2007) C/EBPbeta reprograms white 3T3-L1 preadipocytes to a brown adipocyte pattern of gene expression. J Biol Chem 282(34):24660–24669

    CAS  PubMed  Google Scholar 

  122. Jones LP et al (2011) Abnormal mammary adipose tissue environment of brca1 mutant mice show a persistent deposition of highly vascularized multilocular adipocytes. J Cancer Sci Ther. https://doi.org/10.4172/1948-5956.s2-004

    Article  PubMed  PubMed Central  Google Scholar 

  123. Sanchez-Alvarez R et al (2013) Mitochondrial dysfunction in breast cancer cells prevents tumor growth: understanding chemoprevention with metformin. Cell Cycle 12(1):172–182

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Kozlow W, Guise TA (2005) Breast cancer metastasis to bone: mechanisms of osteolysis and implications for therapy. J Mammary Gland Biol Neoplasia 10(2):169–180

    PubMed  Google Scholar 

  125. Weilbaecher KN, Guise TA, McCauley LK (2011) Cancer to bone: a fatal attraction. Nat Rev Cancer 11(6):411–425

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Blouin S, Basle MF, Chappard D (2008) Interactions between microenvironment and cancer cells in two animal models of bone metastasis. Br J Cancer 98(4):809–815

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Wu MY et al (2018) Molecular regulation of bone metastasis pathogenesis. Cell Physiol Biochem 46(4):1423–1438

    CAS  PubMed  Google Scholar 

  128. Sen S et al (2018) Paratharmone related protein (peptide): a novel prognostic, diagnostic and therapeutic marker in head and neck cancer. J Stomatol Oral Maxillofac Surg 119(1):33–36

    CAS  PubMed  Google Scholar 

  129. Zheng L et al (2013) PTHrP expression in human MDA-MB-231 breast cancer cells is critical for tumor growth and survival and osteoblast inhibition. Int J Biol Sci 9(8):830

    PubMed  PubMed Central  Google Scholar 

  130. Chiechi A et al (2013) Role of TGF-β in breast cancer bone metastases. Adv Biosci Biotechnol 4(10C):15–30

    PubMed  PubMed Central  Google Scholar 

  131. Xu C et al (2015) Co-expression of parathyroid hormone related protein and TGF-beta in breast cancer predicts poor survival outcome. BMC Cancer 15:925

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Kakonen SM et al (2002) Transforming growth factor-beta stimulates parathyroid hormone-related protein and osteolytic metastases via Smad and mitogen-activated protein kinase signaling pathways. J Biol Chem 277(27):24571–24578

    CAS  PubMed  Google Scholar 

  133. Sethi N et al (2011) Tumor-derived JAGGED1 promotes osteolytic bone metastasis of breast cancer by engaging notch signaling in bone cells. Cancer Cell 19(2):192–205

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Wu X et al (2020) RANKL/RANK system-based mechanism for breast cancer bone metastasis and related therapeutic strategies. Front Cell Dev Biol 8:76–76

    PubMed  PubMed Central  Google Scholar 

  135. Langley RR, Fidler IJ (2011) The seed and soil hypothesis revisited—The role of tumor-stroma interactions in metastasis to different organs. Int J Cancer 128(11):2527–2535

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Kang Y et al (2005) Breast cancer bone metastasis mediated by the Smad tumor suppressor pathway. Proc Natl Acad Sci 102(39):13909–13914

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Morris EV, Edwards CM (2016) The role of bone marrow adipocytes in bone metastasis. J Bone Oncol 5(3):121–123

    PubMed  PubMed Central  Google Scholar 

  138. Diedrich JD et al (2018) The lipid side of bone marrow adipocytes: how tumor cells adapt and survive in bone. Curr Osteoporos Rep 16(4):443–457

    PubMed  PubMed Central  Google Scholar 

  139. Takeshita S et al (2014) Age-related marrow adipogenesis is linked to increased expression of RANKL. J Biol Chem 289(24):16699–16710

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Luo G, He Y, Yu X (2018) Bone marrow adipocyte: an intimate partner with tumor cells in bone metastasis. Front Endocrinol 9:339

    Google Scholar 

  141. Holt V, Caplan AI, Haynesworth SE (2014) Identification of a subpopulation of marrow MSC-derived medullary adipocytes that express osteoclast-regulating molecules: marrow adipocytes express osteoclast mediators. PLoS ONE 9(10):e108920

    PubMed  PubMed Central  Google Scholar 

  142. Lanotte M, Metcalf D, Dexter TM (1982) Production of monocyte/macrophage colony-stimulating factor by preadipocyte cell lines derived from murine marrow stroma. J Cell Physiol 112(1):123–127

    CAS  PubMed  Google Scholar 

  143. Fan Y et al (2017) Parathyroid hormone directs bone marrow mesenchymal cell fate. Cell Metab 25(3):661–672

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Cha YJ, Koo JS (2019) Roles of omental and bone marrow adipocytes in tumor biology. Adipocyte 8(1):304–317

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Evangelista GCM et al (2019) 4T1 mammary carcinoma colonization of metastatic niches is accelerated by obesity. Front Oncol 9:685

    PubMed  PubMed Central  Google Scholar 

  146. Herroon MK et al (2013) Bone marrow adipocytes promote tumor growth in bone via FABP4-dependent mechanisms. Oncotarget 4(11):2108–2123

    PubMed  PubMed Central  Google Scholar 

  147. Muruganandan S, Ionescu AM, Sinal CJ (2020) At the crossroads of the adipocyte and osteoclast differentiation programs: future therapeutic perspectives. Int J Mol Sci 21(7):2277

    CAS  PubMed Central  Google Scholar 

  148. Tencerova M, Kassem M (2016) The bone marrow-derived stromal cells: commitment and regulation of adipogenesis. Front Endocrinol 7:127–127

    Google Scholar 

  149. Li S-N, Wu J-F (2020) TGF-β/SMAD signaling regulation of mesenchymal stem cells in adipocyte commitment. Stem Cell Res Ther 11(1):41

    PubMed  PubMed Central  Google Scholar 

  150. Elsafadi M et al (2019) Convergence of TGFβ and BMP signaling in regulating human bone marrow stromal cell differentiation. Sci Rep 9(1):4977

    PubMed  PubMed Central  Google Scholar 

  151. Ahdjoudj S et al (2005) Transforming growth factor-beta inhibits CCAAT/enhancer-binding protein expression and PPARgamma activity in unloaded bone marrow stromal cells. Exp Cell Res 303(1):138–147

    CAS  PubMed  Google Scholar 

  152. Fajol A, Komaba H (2019) Additional evidence for the role of parathyroid hormone in adipose tissue browning. EBioMedicine 40:3–4

    PubMed  PubMed Central  Google Scholar 

  153. Chan GK et al (2001) PTHrP inhibits adipocyte differentiation by down-regulating PPAR gamma activity via a MAPK-dependent pathway. Endocrinology 142(11):4900–4909

    CAS  PubMed  Google Scholar 

  154. Roca-Rodríguez MM et al (2015) Parathyroid hormone-related protein, human adipose-derived stem cells adipogenic capacity and healthy obesity. J Clin Endocrinol Metab 100(6):E826–E835

    PubMed  Google Scholar 

  155. Mukherjee S, Aseer KR, Yun JW (2020) Roles of macrophage colony stimulating factor in white and brown adipocytes. Biotechnol Bioprocess Eng 25(1):29–38

    CAS  Google Scholar 

  156. Hofbauer LC, Schoppet M (2004) Clinical implications of the osteoprotegerin/RANKL/RANK system for bone and vascular diseases. JAMA 292(4):490–495

    CAS  PubMed  Google Scholar 

  157. An JJ et al (2007) Expression and regulation of osteoprotegerin in adipose tissue. Yonsei Med J 48(5):765–772

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Zhang L et al (2016) Role of osteoprotegerin (OPG) in bone marrow adipogenesis. Cell Physiol Biochem 40(3–4):681–692

    PubMed  Google Scholar 

  159. Kühn MC et al (2012) Adipocyte-secreted factors increase osteoblast proliferation and the OPG/RANKL ratio to influence osteoclast formation. Mol Cell Endocrinol 349(2):180–188

    PubMed  Google Scholar 

  160. Zaky DS et al (2019) Circulating osteoprotegerin level in relation to obesity in middle aged females. Int J Prev Treat 8(2):41–45

  161. Ashley DT et al (2011) Similar to adiponectin, serum levels of osteoprotegerin are associated with obesity in healthy subjects. Metabolism 60(7):994–1000

    CAS  PubMed  Google Scholar 

  162. Treeck O, Buechler C, Ortmann O (2019) Chemerin and cancer. Int J Mol Sci 20(15):3750

    CAS  PubMed Central  Google Scholar 

  163. Muruganandan S et al (2013) Chemerin neutralization blocks hematopoietic stem cell osteoclastogenesis. Stem Cells 31(10):2172–2182

    CAS  PubMed  Google Scholar 

  164. Thommesen L et al (2006) Expression and regulation of resistin in osteoblasts and osteoclasts indicate a role in bone metabolism. J Cell Biochem 99(3):824–834

    CAS  PubMed  Google Scholar 

  165. Timaner M, Tsai KK, Shaked Y (2020) The multifaceted role of mesenchymal stem cells in cancer. Semin Cancer Biol 60:225–237

    CAS  PubMed  Google Scholar 

  166. Berebichez-Fridman R, Montero-Olvera PR (2018) Sources and clinical applications of mesenchymal stem cells: state-of-the-art review. Sultan Qaboos Univ Med J 18(3):e264–e277

    PubMed  PubMed Central  Google Scholar 

  167. Ghosh S et al (2014) Association of obesity and circulating adipose stromal cells among breast cancer survivors. Mol Biol Rep 41(5):2907–2916

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Hillers LE et al (2018) Obesity-activated adipose-derived stromal cells promote breast cancer growth and invasion. Neoplasia 20(11):1161–1174

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Strong AL et al (2013) Obesity associated alterations in the biology of adipose stem cells mediate enhanced tumorigenesis by estrogen dependent pathways. Breast Cancer Res 15(5):R102

    PubMed  PubMed Central  Google Scholar 

  170. Benova A, Tencerova M (2020) Obesity-induced changes in bone marrow homeostasis. Front Endocrinol 11:294–294

    Google Scholar 

  171. Halade GV et al (2011) Obesity-mediated inflammatory microenvironment stimulates osteoclastogenesis and bone loss in mice. Exp Gerontol 46(1):43–52

    CAS  PubMed  Google Scholar 

  172. Goldstein RH et al (2010) Human bone marrow-derived MSCs can home to orthotopic breast cancer tumors and promote bone metastasis. Can Res 70(24):10044–10050

    CAS  Google Scholar 

  173. Blache U et al (2019) Mesenchymal stromal cell activation by breast cancer secretomes in bioengineered 3D microenvironments. Life Sci Alliance 2(3):e201900304

    PubMed  PubMed Central  Google Scholar 

  174. Mishra PJ et al (2008) Carcinoma-associated fibroblast-like differentiation of human mesenchymal stem cells. Cancer Res 68(11):4331–4339

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Hill BS et al (2017) Tumor-educated mesenchymal stem cells promote pro-metastatic phenotype. Oncotarget 8(42):73296–73311

    PubMed  PubMed Central  Google Scholar 

  176. Martin FT et al (2010) Potential role of mesenchymal stem cells (MSCs) in the breast tumour microenvironment: stimulation of epithelial to mesenchymal transition (EMT). Breast Cancer Res Treat 124(2):317–326

    CAS  PubMed  Google Scholar 

  177. Dwyer RM et al (2007) Monocyte chemotactic protein-1 secreted by primary breast tumors stimulates migration of mesenchymal stem cells. Clin Cancer Res 13(17):5020–5027

    CAS  PubMed  Google Scholar 

  178. Karnoub AE et al (2007) Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature 449(7162):557–563

    CAS  PubMed  Google Scholar 

  179. Shangguan L et al (2012) Inhibition of TGF-β/Smad signaling by BAMBI blocks differentiation of human mesenchymal stem cells to carcinoma-associated fibroblasts and abolishes their protumor effects. Stem Cells 30(12):2810–2819

    PubMed  Google Scholar 

  180. Orimo A et al (2005) Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell 121(3):335–348

    CAS  PubMed  Google Scholar 

  181. Strong AL et al (2017) Obesity enhances the conversion of adipose-derived stromal/stem cells into carcinoma-associated fibroblast leading to cancer cell proliferation and progression to an invasive phenotype. Stem Cells Int 2017:9216502

    PubMed  PubMed Central  Google Scholar 

  182. Cao JJ (2011) Effects of obesity on bone metabolism. J Orthop Surg Res 6:30

    PubMed  PubMed Central  Google Scholar 

  183. Ayoub NM et al (2019) Impact of obesity on clinicopathologic characteristics and disease prognosis in pre-and postmenopausal breast cancer patients: a retrospective institutional study. J Obesity. https://doi.org/10.1155/2019/3820759

    Article  Google Scholar 

  184. Osman MA, Hennessy BT (2015) Obesity correlation with metastases development and response to first-line metastatic chemotherapy in breast cancer. Clin Med Insights Oncol 9:105–112

    PubMed  PubMed Central  Google Scholar 

  185. Yazici O et al (2014) Effect of body mass index on metastatic pattern in early breast cancer patients. J Clin Oncol 32(15_suppl):e11553

  186. Ewertz M et al (2011) Effect of obesity on prognosis after early-stage breast cancer. J Clin Oncol 29(1):25–31

    PubMed  Google Scholar 

  187. White AJ et al (2015) Overall and central adiposity and breast cancer risk in the sister study. Cancer 121(20):3700–3708

    PubMed  Google Scholar 

  188. Neuhouser ML et al (2015) Overweight, obesity, and postmenopausal invasive breast cancer risk: a secondary analysis of the women’s health initiative randomized clinical trials. JAMA Oncol 1(5):611–621

    PubMed  PubMed Central  Google Scholar 

  189. Kamineni A et al (2013) Body mass index, tumor characteristics, and prognosis following diagnosis of early-stage breast cancer in a mammographically screened population. Cancer Causes Control 24(2):305–312

    PubMed  Google Scholar 

  190. Daling JR et al (2001) Relation of body mass index to tumor markers and survival among young women with invasive ductal breast carcinoma. Cancer 92(4):720–729

    CAS  PubMed  Google Scholar 

  191. Majed B et al (2008) Is obesity an independent prognosis factor in woman breast cancer? Breast Cancer Res Treat 111(2):329–342

    PubMed  Google Scholar 

  192. Santa-Maria CA et al (2015) Aggressive estrogen-receptor-positive breast cancer arising in patients with elevated body mass index. Int J Clin Oncol 20(2):317–323

    CAS  PubMed  Google Scholar 

  193. Suzuki R et al (2006) Body weight and postmenopausal breast cancer risk defined by estrogen and progesterone receptor status among Swedish women: a prospective cohort study. Int J Cancer 119(7):1683–1689

    CAS  PubMed  Google Scholar 

  194. Tehard B, Clavel-Chapelon F (2005) Several anthropometric measurements and breast cancer risk: results of the E3N cohort study. Int J Obesity 30(1):156–163

    Google Scholar 

  195. Canchola AJ et al (2012) Body size and the risk of postmenopausal breast cancer subtypes in the California teachers study cohort. Cancer Causes Control. https://doi.org/10.1007/s10552-012-9897-x

    Article  PubMed  PubMed Central  Google Scholar 

  196. Vona-Davis L et al (2008) Triple-negative breast cancer and obesity in a rural appalachian population. Cancer Epidemiol Biomarkers Prev 17(12):3319–3324

    CAS  PubMed  PubMed Central  Google Scholar 

  197. Yuan HJ, Sun KW, Yu K (2014) Leptin promotes the proliferation and migration of human breast cancer through the extracellular-signal regulated kinase pathway. Mol Med Rep 9(1):350–354

    CAS  PubMed  Google Scholar 

  198. Walter M et al (2009) Interleukin 6 secreted from adipose stromal cells promotes migration and invasion of breast cancer cells. Oncogene 28(30):2745–2755

    CAS  PubMed  PubMed Central  Google Scholar 

  199. Gyamfi J et al (2018) Multifaceted roles of interleukin-6 in adipocyte-breast cancer cell interaction. Transl Oncol 11(2):275–285

    PubMed  PubMed Central  Google Scholar 

  200. Cai X et al (2017) Inflammatory factor TNF-α promotes the growth of breast cancer via the positive feedback loop of TNFR1/NF-κB (and/or p38)/p-STAT3/HBXIP/TNFR1. Oncotarget 8(35):58338–58352

    PubMed  PubMed Central  Google Scholar 

  201. Martin TJ (2005) Osteoblast-derived PTHrP is a physiological regulator of bone formation. J Clin Investig 115(9):2322–2324

    CAS  PubMed  PubMed Central  Google Scholar 

  202. Soki FN, Park SI, McCauley LK (2012) The multifaceted actions of PTHrP in skeletal metastasis. Future Oncol 8(7):803–817

    CAS  PubMed  Google Scholar 

  203. Le Pape F, Vargas G, Clézardin P (2016) The role of osteoclasts in breast cancer bone metastasis. J Bone Oncol 5(3):93–95

    PubMed  PubMed Central  Google Scholar 

  204. Juarez P, Guise TA (2011) TGF-beta in cancer and bone: implications for treatment of bone metastases. Bone 48(1):23–29

    CAS  PubMed  Google Scholar 

  205. Yagiz K, Rittling SR (2009) Both cell-surface and secreted CSF-1 expressed by tumor cells metastatic to bone can contribute to osteoclast activation. Exp Cell Res 315(14):2442–2452

    CAS  PubMed  PubMed Central  Google Scholar 

  206. Christopoulos PF, Msaouel P, Koutsilieris M (2015) The role of the insulin-like growth factor-1 system in breast cancer. Mol Cancer 14:43

    PubMed  PubMed Central  Google Scholar 

  207. Rieunier G et al (2019) Bad to the bone: the role of the insulin-like growth factor axis in osseous metastasis. Clin Cancer Res 25(12):3479–3485

    CAS  PubMed  Google Scholar 

  208. Fritton JC et al (2010) The insulin-like growth factor-1 binding protein acid-labile subunit alters mesenchymal stromal cell fate. J Biol Chem 285(7):4709–4714

    CAS  PubMed  Google Scholar 

  209. Mulholland BS, Forwood MR, Morrison NA (2019) Monocyte chemoattractant protein-1 (MCP-1/CCL2) drives activation of bone remodelling and skeletal metastasis. Curr Osteoporos Rep 17(6):538–547

    PubMed  PubMed Central  Google Scholar 

  210. Ito A et al (2008) Role of CC chemokine receptor 2 in bone marrow cells in the recruitment of macrophages into obese adipose tissue. J Biol Chem 283(51):35715–35723

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Dr. Chandi C. Mandal is supported by the Department of Biotechnology [6242-P9/RGCB/PMD/DBT/CCML/2015], University Grant Commissions [30-49/2014 (BSR)] and Department of Science and Technology (India)-Russian Foundation for Basic Research (INT/RUS/RFBR/P-256). The funders had no role in study design, data collection, and analysis, decision to publish, or preparation of the manuscript. We make an apology to various authors whose works could not be cited because of several limitations and space constraints.

Author information

Authors and Affiliations

Authors

Contributions

SS had prepared tables, figures, and drafted manuscript. MT had re-organised and edited manuscript critically. CCM had formulated the manuscript and edited and contributed to the manuscript writing.

Corresponding author

Correspondence to Chandi C. Mandal.

Ethics declarations

Conflict of interest

All authors have declared no conflict of interest to this manuscript or closely related manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soni, S., Torvund, M. & Mandal, C.C. Molecular insights into the interplay between adiposity, breast cancer and bone metastasis. Clin Exp Metastasis 38, 119–138 (2021). https://doi.org/10.1007/s10585-021-10076-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-021-10076-0

Keywords

Navigation