Skip to main content

Advertisement

Log in

CTHRC1 promotes M2-like macrophage recruitment and myometrial invasion in endometrial carcinoma by integrin-Akt signaling pathway

  • Research Paper
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

The infiltration of tumor-associated macrophages (TAMs) is associated with tumor progression and poor prognosis in endometrial cancer (EC). Collagen triple helix repeat containing 1 (CTHRC1), a secreted ECM protein, has been reported to have important roles in promoting cancer invasion and metastasis, but the functional role of CTHRC1 and its association with TAMs in EC remain unclear. Here we report that, in EC patients, CTHRC1 expression was up-regulated in endometrial cancer tissues compared with normal endometrium (P < 0.0001), and is positively correlated with tumor grade and depth of myometrial invasion (P = 0.024 and P = 0.0002, respectively). Meanwhile, CTHRC1 expression was positively correlated with an increased number of infiltrating TAMs, especially M2-like TAMs (P = 0.003, P = 0.001). In the tumor microenvironment of EC, CTHRC1 not only promoted myometrial invasion by interacting with Integrin β3-Akt signaling pathway, but also promoted infiltration of M2-like TAMs by upregulating Fractalkine chemokine receptor (CX3CR1) expression in macrophages. Changing levels of recombinant CTHRC1 protein (rCTHRC1) promoted tumor migration and invasion via enhancing macrophage recruitment in vitro. In summary, our findings eventually provided a novel role for CTHRC1 in remodeling the tumor immune microenvironment to promote tumor metastasis in EC patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F (2015) Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 136(5):E359–E386. https://doi.org/10.1002/ijc.29210

    Article  CAS  PubMed  Google Scholar 

  2. Evans T, Sany O, Pearmain P, Ganesan R, Blann A, Sundar S (2011) Differential trends in the rising incidence of endometrial cancer by type: data from a UK population-based registry from 1994 to 2006. Br J Cancer 104(9):1505–1510. https://doi.org/10.1038/bjc.2011.68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A (2015) Global cancer statistics, 2012. CA Cancer J Clin 65(2):87–108. https://doi.org/10.3322/caac.21262

    Article  PubMed  Google Scholar 

  4. Chen W, Zheng R, Baade PD, Zhang S, Zeng H, Bray F, Jemal A, Yu XQ, He J (2016) Cancer statistics in China, 2015. CA Cancer J Clin 66(2):115–132. https://doi.org/10.3322/caac.21338

    Article  PubMed  Google Scholar 

  5. Arend RC, Jones BA, Martinez A, Goodfellow P (2018) Endometrial cancer: molecular markers and management of advanced stage disease. Gynecol Oncol. https://doi.org/10.1016/j.ygyno.2018.05.015

    Article  PubMed  Google Scholar 

  6. Abdulfatah E, Ahmed Q, Alosh B, Bandyopadhyay S, Bluth MH, Ali-Fehmi R (2018) Gynecologic cancers: molecular updates 2018. Clin Lab Med 38(2):421–438. https://doi.org/10.1016/j.cll.2018.02.007

    Article  PubMed  Google Scholar 

  7. Kubler K, Ayub TH, Weber SK, Zivanovic O, Abramian A, Keyver-Paik MD, Mallmann MR, Kaiser C, Serce NB, Kuhn W, Rudlowski C (2014) Prognostic significance of tumor-associated macrophages in endometrial adenocarcinoma. Gynecol Oncol 135(2):176–183. https://doi.org/10.1016/j.ygyno.2014.08.028

    Article  CAS  PubMed  Google Scholar 

  8. Espinosa I, Jose Carnicer M, Catasus L, Canet B, D’Angelo E, Zannoni GF, Prat J (2010) Myometrial invasion and lymph node metastasis in endometrioid carcinomas: tumor-associated macrophages, microvessel density, and HIF1A have a crucial role. Am J Surg Pathol 34(11):1708–1714. https://doi.org/10.1097/PAS.0b013e3181f32168

    Article  PubMed  Google Scholar 

  9. Soeda S, Nakamura N, Ozeki T, Nishiyama H, Hojo H, Yamada H, Abe M, Sato A (2008) Tumor-associated macrophages correlate with vascular space invasion and myometrial invasion in endometrial carcinoma. Gynecol Oncol 109(1):122–128. https://doi.org/10.1016/j.ygyno.2007.12.033

    Article  CAS  PubMed  Google Scholar 

  10. Tong H, Ke JQ, Jiang FZ, Wang XJ, Wang FY, Li YR, Lu W, Wan XP (2016) Tumor-associated macrophage-derived CXCL8 could induce ERalpha suppression via HOXB13 in endometrial cancer. Cancer Lett 376(1):127–136. https://doi.org/10.1016/j.canlet.2016.03.036

    Article  CAS  PubMed  Google Scholar 

  11. Komohara Y, Fujiwara Y, Ohnishi K, Takeya M (2016) Tumor-associated macrophages: Potential therapeutic targets for anti-cancer therapy. Adv Drug Deliv Rev 99(Pt B):180–185. https://doi.org/10.1016/j.addr.2015.11.009

    Article  CAS  PubMed  Google Scholar 

  12. Ostuni R, Kratochvill F, Murray PJ, Natoli G (2015) Macrophages and cancer: from mechanisms to therapeutic implications. Trends Immunol 36(4):229–239. https://doi.org/10.1016/j.it.2015.02.004

    Article  CAS  PubMed  Google Scholar 

  13. Qian BZ, Pollard JW (2010) Macrophage diversity enhances tumor progression and metastasis. Cell 141(1):39–51. https://doi.org/10.1016/j.cell.2010.03.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hashimoto I, Kodama J, Seki N, Hongo A, Miyagi Y, Yoshinouchi M, Kudo T (2000) Macrophage infiltration and angiogenesis in endometrial cancer. Anticancer Res 20(6C):4853–4856

    CAS  PubMed  Google Scholar 

  15. Salvesen HB, Akslen LA (1999) Significance of tumour-associated macrophages, vascular endothelial growth factor and thrombospondin-1 expression for tumour angiogenesis and prognosis in endometrial carcinomas. Int J Cancer 84(5):538–543

    Article  CAS  PubMed  Google Scholar 

  16. Pyagay P, Heroult M, Wang Q, Lehnert W, Belden J, Liaw L, Friesel RE, Lindner V (2005) Collagen triple helix repeat containing 1, a novel secreted protein in injured and diseased arteries, inhibits collagen expression and promotes cell migration. Circ Res 96(2):261–268. https://doi.org/10.1161/01.RES.0000154262.07264.12

    Article  CAS  PubMed  Google Scholar 

  17. Ma MZ, Zhuang C, Yang XM, Zhang ZZ, Ma H, Zhang WM, You H, Qin W, Gu J, Yang S, Cao H, Zhang ZG (2014) CTHRC1 acts as a prognostic factor and promotes invasiveness of gastrointestinal stromal tumors by activating Wnt/PCP-Rho signaling. Neoplasia 16(3):265–278. https://doi.org/10.1016/j.neo.2014.03.001 278 e261–213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kim JH, Baek TH, Yim HS, Kim KH, Jeong SH, Kang HB, Oh SS, Lee HG, Kim JW, Kim KD (2013) Collagen triple helix repeat containing-1 (CTHRC1) expression in invasive ductal carcinoma of the breast: the impact on prognosis and correlation to clinicopathologic features. Pathol Oncol Res 19(4):731–737. https://doi.org/10.1007/s12253-013-9636-y

    Article  CAS  PubMed  Google Scholar 

  19. Guo B, Yan H, Li L, Yin K, Ji F, Zhang S (2017) Collagen triple helix repeat containing 1 (CTHRC1) activates Integrin beta3/FAK signaling and promotes metastasis in ovarian cancer. J Ovarian Res 10(1):69. https://doi.org/10.1186/s13048-017-0358-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Park EH, Kim S, Jo JY, Kim SJ, Hwang Y, Kim JM, Song SY, Lee DK, Koh SS (2013) Collagen triple helix repeat containing-1 promotes pancreatic cancer progression by regulating migration and adhesion of tumor cells. Carcinogenesis 34(3):694–702. https://doi.org/10.1093/carcin/bgs378

    Article  CAS  PubMed  Google Scholar 

  21. Feng CC, Zhou Q, Xu FL, Guang Y (2017) Expression and clinical significance of CTHRC1 in endometrial cancer. Pract J Cancer 02:221–223

    Google Scholar 

  22. Wessel D, Flügge UI (1984) A method for the quantitative recovery of protein in dilute solution in the presence of detergents and lipids. Anal Biochem 138(1):141–143. https://doi.org/10.1016/0003-2697(84)90782-6

    Article  CAS  PubMed  Google Scholar 

  23. Zhang YL, Li Q, Yang XM, Fang F, Li J, Wang YH, Yang Q, Zhu L, Nie HZ, Zhang XL, Feng MX, Jiang SH, Tian GA, Hu LP, Lee HY, Lee SJ, Xia Q, Zhang ZG (2018) SPON2 promotes M1-like macrophage recruitment and inhibits hepatocellular carcinoma metastasis by distinct integrin-Rho GTPase-hippo pathways. Cancer Res 78(9):2305–2317. https://doi.org/10.1158/0008-5472.CAN-17-2867

    Article  CAS  PubMed  Google Scholar 

  24. White GE, Greaves DR (2012) Fractalkine: a survivor’s guide: chemokines as antiapoptotic mediators. Arterioscler Thromb Vasc Biol 32(3):589–594. https://doi.org/10.1161/ATVBAHA.111.237412

    Article  CAS  PubMed  Google Scholar 

  25. Balli D, Ren X, Chou FS, Cross E, Zhang Y, Kalinichenko VV, Kalin TV (2012) Foxm1 transcription factor is required for macrophage migration during lung inflammation and tumor formation. Oncogene 31(34):3875–3888. https://doi.org/10.1038/onc.2011.549

    Article  CAS  PubMed  Google Scholar 

  26. Siegel RL, Miller KD, Jemal A (2018) Cancer statistics, 2018. CA Cancer J Clin 68(1):7–30. https://doi.org/10.3322/caac.21442

    Article  PubMed  Google Scholar 

  27. Brown L (2008) Pathology of uterine malignancies. Clin Oncol 20(6):433–447. https://doi.org/10.1016/j.clon.2008.04.005

    Article  CAS  Google Scholar 

  28. Cole AJ, Quick CM (2013) Patterns of myoinvasion in endometrial adenocarcinoma: recognition and implications. Adv Anat Pathol 20(3):141–147. https://doi.org/10.1097/PAP.0b013e31828d17cc

    Article  CAS  PubMed  Google Scholar 

  29. Mantovani A, Marchesi F, Malesci A, Laghi L, Allavena P (2017) Tumour-associated macrophages as treatment targets in oncology. Nat Rev Clin Oncol 14(7):399–416. https://doi.org/10.1038/nrclinonc.2016.217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. De Palma M, Lewis CE (2013) Macrophage regulation of tumor responses to anticancer therapies. Cancer Cell 23(3):277–286. https://doi.org/10.1016/j.ccr.2013.02.013

    Article  CAS  PubMed  Google Scholar 

  31. Cortez-Retamozo V, Etzrodt M, Newton A, Rauch PJ, Chudnovskiy A, Berger C, Ryan RJ, Iwamoto Y, Marinelli B, Gorbatov R, Forghani R, Novobrantseva TI, Koteliansky V, Figueiredo JL, Chen JW, Anderson DG, Nahrendorf M, Swirski FK, Weissleder R, Pittet MJ (2012) Origins of tumor-associated macrophages and neutrophils. Proc Natl Acad Sci USA 109(7):2491–2496. https://doi.org/10.1073/pnas.1113744109

    Article  PubMed  PubMed Central  Google Scholar 

  32. Noy R, Pollard JW (2014) Tumor-associated macrophages: from mechanisms to therapy. Immunity 41(1):49–61. https://doi.org/10.1016/j.immuni.2014.06.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Qian BZ, Li J, Zhang H, Kitamura T, Zhang J, Campion LR, Kaiser EA, Snyder LA, Pollard JW (2011) CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature 475(7355):222–225. https://doi.org/10.1038/nature10138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhou J, Xiang Y, Yoshimura T, Chen K, Gong W, Huang J, Zhou Y, Yao X, Bian X, Wang JM (2014) The role of chemoattractant receptors in shaping the tumor microenvironment. Biomed Res Int 2014:751392. https://doi.org/10.1155/2014/751392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Stohn JP, Perreault NG, Wang Q, Liaw L, Lindner V (2012) Cthrc1, a novel circulating hormone regulating metabolism. PLoS ONE 7(10):e47142. https://doi.org/10.1371/journal.pone.0047142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Leclair RJ, Wang Q, Benson MA, Prudovsky I, Lindner V (2008) Intracellular localization of Cthrc1 characterizes differentiated smooth muscle. Arterioscler Thromb Vasc Biol 28(7):1332–1338. https://doi.org/10.1161/ATVBAHA.108.166579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Takeshita S, Fumoto T, Matsuoka K, Park KA, Aburatani H, Kato S, Ito M, Ikeda K (2013) Osteoclast-secreted CTHRC1 in the coupling of bone resorption to formation. J Clin Invest 123(9):3914–3924. https://doi.org/10.1172/JCI69493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ke Z, He W, Lai Y, Guo X, Chen S, Li S, Wang Y, Wang L (2014) Overexpression of collagen triple helix repeat containing 1 (CTHRC1) is associated with tumour aggressiveness and poor prognosis in human non-small cell lung cancer. Oncotarget 5(19):9410–9424. https://doi.org/10.18632/oncotarget.2421

    Article  PubMed  PubMed Central  Google Scholar 

  39. Ferretti E, Bertolotto M, Deaglio S, Tripodo C, Ribatti D, Audrito V, Blengio F, Matis S, Zupo S, Rossi D, Ottonello L, Gaidano G, Malavasi F, Pistoia V, Corcione A (2011) A novel role of the CX3CR39/CX3CL1 system in the cross-talk between chronic lymphocytic leukemia cells and tumor microenvironment. Leukemia 25(8):1268–1277. https://doi.org/10.1038/leu.2011.88

    Article  CAS  PubMed  Google Scholar 

  40. Zhang J, Patel JM (2010) Role of the CX3CL1-CX3CR40 axis in chronic inflammatory lung diseases. Int J Clin Exp Med 3(3):233–244

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Tang Z, Gan Y, Liu Q, Yin JX, Liu Q, Shi J, Shi FD (2014) CX3CR41 deficiency suppresses activation and neurotoxicity of microglia/macrophage in experimental ischemic stroke. J Neuroinflamm 11:26. https://doi.org/10.1186/1742-2094-11-26

    Article  CAS  Google Scholar 

  42. Morimura S, Oka T, Sugaya M, Sato S (2016) CX3CR42 deficiency attenuates imiquimod-induced psoriasis-like skin inflammation with decreased M1 macrophages. J Dermatol Sci 82(3):175–188. https://doi.org/10.1016/j.jdermsci.2016.03.004

    Article  CAS  PubMed  Google Scholar 

  43. Schmall A, Al-Tamari HM, Herold S, Kampschulte M, Weigert A, Wietelmann A, Vipotnik N, Grimminger F, Seeger W, Pullamsetti SS, Savai R (2015) Macrophage and cancer cell cross-talk via CCR43 and CX3CR43 is a fundamental mechanism driving lung cancer. Am J Respir Crit Care Med 191(4):437–447. https://doi.org/10.1164/rccm.201406-1137OC

    Article  CAS  PubMed  Google Scholar 

  44. Takada Y, Ye X, Simon S (2007) The integrins. Genome Biol 8(5):215. https://doi.org/10.1186/gb-2007-8-5-215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hynes RO (2002) Integrins: bidirectional, allosteric signaling machines. Cell 110(6):673–687

    Article  CAS  PubMed  Google Scholar 

  46. Longmate W, DiPersio CM (2017) Beyond adhesion: emerging roles for integrins in control of the tumor microenvironment. F1000Res 6:1612. https://doi.org/10.12688/f1000research.11877.1

    Article  PubMed  PubMed Central  Google Scholar 

  47. Delon I, Brown NH (2007) Integrins and the actin cytoskeleton. Curr Opin Cell Biol 19(1):43–50. https://doi.org/10.1016/j.ceb.2006.12.013

    Article  CAS  PubMed  Google Scholar 

  48. Schwartz MA, Ginsberg MH (2002) Networks and crosstalk: integrin signalling spreads. Nat Cell Biol 4(4):E65–E68. https://doi.org/10.1038/ncb0402-e65

    Article  CAS  PubMed  Google Scholar 

  49. Zhang Y, Yao X, Jiang C, Yue J, Guan J, Cheng H, Hajirashid M, Wang Y, Fan L (2013) Expression of PI3K, PTEN and Akt in small intestinal adenocarcinoma detected by quantum dots-based immunofluorescence technology. Cancer Biomark 13(4):299–305. https://doi.org/10.3233/CBM-130352

    Article  CAS  PubMed  Google Scholar 

  50. Yothaisong S, Dokduang H, Techasen A, Namwat N, Yongvanit P, Bhudhisawasdi V, Puapairoj A, Riggins GJ, Loilome W (2013) Increased activation of PI3K/AKT signaling pathway is associated with cholangiocarcinoma metastasis and PI3K/mTOR inhibition presents a possible therapeutic strategy. Tumor Biology 34(6):3637–3648. https://doi.org/10.1007/s13277-013-0945-2

    Article  CAS  PubMed  Google Scholar 

  51. Ramos MV, Fernandez GC, Brando RJ, Panek CA, Bentancor LV, Landoni VI, Isturiz MA, Palermo MS (2010) Interleukin-10 and interferon-gamma modulate surface expression of fractalkine-receptor (CX(3)CR51) via PI3K in monocytes. Immunology 129(4):600–609. https://doi.org/10.1111/j.1365-2567.2009.03181.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (ID 81672564 to S. Zhang).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wen Di or Shu Zhang.

Ethics declarations

Conflicts of interest

The authors declare no potential conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, LY., Yin, KM., Bai, YH. et al. CTHRC1 promotes M2-like macrophage recruitment and myometrial invasion in endometrial carcinoma by integrin-Akt signaling pathway. Clin Exp Metastasis 36, 351–363 (2019). https://doi.org/10.1007/s10585-019-09971-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-019-09971-4

Keywords

Navigation