Skip to main content

Advertisement

Log in

Lymphangiogenesis, lymphatic systemomics, and cancer: context, advances and unanswered questions

  • Research Paper
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

Ever since it was discovered that endothelial cells line lymphatic vessels, investigators have been working on unraveling the mechanisms that control the growth of this distinctive endothelium and its role in normal physiology and human disease. Recent technological advances have ushered in a new era of “omics” research on the lymphatic system. Research on the genome, transcriptome, proteome, and metabolome of lymphatics has increased our understanding of the biology of the lymphatic vasculature. Here, we introduce the context—lymphatic “systemomics,” then briefly review some of the latest advances in research on tumor-associated lymphatic vessels highlighting several “omic” studies that have shed light on mechanisms controlling the growth and function of tumor-associated lymphatic vessels. We conclude by returning, with unanswered questions, to the larger context of cancer and the lymphatic system as a vasculature, circulation, route of entry and transport, and control center of the immune network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Witte MH, Way DL, Witte CL, Bernas M (1997) Lymphangiogenesis: mechanisms, significance and clinical implications. In: Goldberg ID, Rosen EM (eds) Regulation of angiogenesis. Birkhäuser Verlag, Basel, pp 65–112

    Chapter  Google Scholar 

  2. Witte MH, Bernas M, Martin C, Witte CL (2001) Lymphangiogenesis and lymphangiodysplasias: from molecular to clinical lymphology. In: Wilting J (guest ed) The biology of lymphangiogenesis. Microsc Res Tech 55(2):122–145

    Article  CAS  Google Scholar 

  3. Casley-Smith JR, Florey HW (1961) The structure of normal small lymphatics. Q J Exp Physiol 46:101–106

    Article  CAS  Google Scholar 

  4. Kinmonth JB (ed) (1972) The lymphatics: diseases, lymphography and surgery. Edward Arnold, London

    Google Scholar 

  5. Morton DL, Thompson JF, Cochran AJ, Mozzillo N, Elashoff R, Essner R et al (2006) Sentinel-node biopsy or nodal observation in melanoma. N Engl J Med 355(13):1307–1317

    Article  CAS  Google Scholar 

  6. Witte MH, Dumont AE, Cole WR, Witte CL, Kintner K (1969) Lymph circulation in hepatic cirrhosis: effect of portacaval shunt. Ann Int Med 70(2):303–310

    Article  CAS  Google Scholar 

  7. Witte MH, Dumont AE, Clauss RH, Rader B, Levine N, Breed E (1969) Lymph circulation in congestive heart failure: effect of external thoracic duct drainage. Circulation 39(6):723–733

    Article  CAS  Google Scholar 

  8. Triolo VA (1965) Nineteenth century foundations of cancer research: advances in tumor pathology, nomenclature, and theories of oncogenesis. Cancer Res 25(2):76–106

    Google Scholar 

  9. Mandal A (2013) History of breast cancer. News Medical Life Sciences. https://www.news-medical.net/health/History-of-Breast-Cancer.aspx

  10. Fisher B, Fisher ER (1968) Role of lymphatic system in dissemination of tumor. In: Mayerson HS (ed) Lymph and the lymphatic system. CC Thomas, New York, pp 324–347

    Google Scholar 

  11. Folkman J (2002) Role of angiogenesis in tumor growth and metastasis. Semin Oncol 29(6 Suppl 16):15–18

    Article  CAS  Google Scholar 

  12. Bowman C, Witte MH, Witte CL, Way D, Nagle R, Copeland J, Daschbach C (1984) Cystic hygroma reconsidered: hamartoma or neoplasm? Primary culture of an endothelial cell line from a massive cervicomediastinal cystic hygroma with bony lymphangiomatosis. Lymphology 17(1):15–22

    CAS  PubMed  Google Scholar 

  13. Witte MH, Witte CL (1986) Lymphangiogenesis and lymphologic syndromes. Lymphology 19(1):21–28

    CAS  PubMed  Google Scholar 

  14. Witte MH, Witte CL (1997) On tumor (and other) lymphangiogenesis. Lymphology 30(1):1–2

    CAS  PubMed  Google Scholar 

  15. Van Netten JP, Cann SA, Van der Wethuizen NG (1996) Angiogenesis and tumor growth. N Engl J Med 334(26):920–921

    PubMed  Google Scholar 

  16. Ferrara N, Henzel WJ (1989) Pituitary follicular cells secrete a novel heparin-binding growth factor specific for vascular endothelial cells. Biochem Biophys Res Commun 161(2):851–858

    Article  CAS  Google Scholar 

  17. Dvorak HF (2006) Discovery of vascular permeability factor (VPF). Exp Cell Res 312(5):522–526

    Article  CAS  Google Scholar 

  18. Joukov V, Pajusola K, Kaipainen A, Chilov D, Lahtinen I, Kukk E et al (1996) A novel vascular endothelial growth factor, VEGF-C, is a ligand for the Flt4 (VEGFR-3) and KDR (VEGFR-2) receptor tyrosine kinases. EMBO 15(2):290–298

    Article  CAS  Google Scholar 

  19. Achen MG, Jeltsch M, Kukk E, Mäkinen T, Vitali A, Wilks AF, Alitalo K et al (1998) Vascular endothelial growth factor D (VEGF-D) is a ligand for the tyrosine kinases VEGF receptor 2 (Flk1) and VEGFR3 (Flt4). Proc Natl Acad Sci USA 95(2):548–553

    Article  CAS  Google Scholar 

  20. Brouillard P, Boon L, Vikkulla M (2014) Genetics of lymphatic abnormalities. J Clin Investig 124(3):898–904

    Article  CAS  Google Scholar 

  21. Mohammed RA, Martin SG, Gill S et al (2007) Improved methods of detection of lymphovascular invasion demonstrate that it is the predominant method of vascular invasion in breast cancer and has important clinical consequences. Am J Surg Pathol 3:825–833

    Google Scholar 

  22. Arnaout-Alkarain A, Kahn HL, Narod SA et al (2007) Significance of lymph vessel invasion identified by the endothelial lymphatic marker D2-40 in node negative breast cancer. Mod Pathol 20:83–89

    Article  Google Scholar 

  23. Azalli G (2006) On the transendothelial passage of tumor cell from extravasal matrix into the lumen of absorbing lymphatic vessel. Microvasc Res 72:74–85

    Article  Google Scholar 

  24. Burn J, Watne A, Moore G (1962) The role of the thoracic duct lymph in cancer dissemination. Br J Cancer 16:608–615

    Article  CAS  Google Scholar 

  25. Klingen T, Chen Y, Stefansson IM, Knutsvik G, Collet K, Abrahamsen AL et al (2017) Tumour cell invasion into blood vessels is significantly related to breast cancer subtypes and decreased survival. J Clin Pathol 70:313–319

    Article  CAS  Google Scholar 

  26. Skobe M, Hawighorst T, Jackson DG, Prevo R, Janes L, Velasco P et al (2001) Induction of tumor lymphangiogenesis by VEGF-C promotes breast cancer metastasis. Nat Med 7(2):192–198

    Article  CAS  Google Scholar 

  27. Mandriota SJ, Jussila L, Jeltsch M, Compagni A, Baetens D, Prevo R et al (2001) Vascular endothelial growth factor-C-mediated lymphangiogenesis promotes tumour metastasis. EMBO J 20(4):672–682

    Article  CAS  Google Scholar 

  28. Stacker SA, Caesar C, Baldwin ME, Thornton GE, Williams RA, Prevo R et al (2001) VEGF-D promotes the metastatic spread of tumor cells via the lymphatics. Nat Med 7(2):186–191

    Article  CAS  Google Scholar 

  29. Karpanen T, Alitalo K (2008) Molecular biology and pathology of lymphangiogenesis. Annu Rev Pathol 3:367–397

    Article  CAS  Google Scholar 

  30. He Y, Kozaki K, Karpanen T, Koshikawa K, Yla-Herttuala S, Takahashi T et al (2002) Suppression of tumor lymphangiogenesis and lymph node metastasis by blocking vascular endothelial growth factor receptor 3 signaling. J Natl Cancer Inst 94(11):819–825

    Article  CAS  Google Scholar 

  31. Alitalo A, Detmar M (2012) Interaction of tumor cells and lymphatic vessels in cancer progression. Oncogene 31(42):4499–4508

    Article  CAS  Google Scholar 

  32. Bo C, Xiaopeng D, Chuanliang P, Xiaogang Z (2009) Expression of vascular endothelial growth factors C and D correlates with lymphangiogenesis and lymph node metastasis in lung adenocarcinoma. Thorac Cardiovasc Surg 57(5):291–294

    Article  Google Scholar 

  33. Feng Y, Wang W, Hu J, Ma J, Zhang Y, Zhang J (2010) Expression of VEGF-C and VEGF-D as significant markers for assessment of lymphangiogenesis and lymph node metastasis in non-small cell lung cancer. Anat Rec 293(5):802–812

    Article  CAS  Google Scholar 

  34. Kadota K, Huang CL, Liu D, Ueno M, Kushida Y, Haba R et al (2008) The clinical significance of lymphangiogenesis and angiogenesis in non-small cell lung cancer patients. Eur J Cancer 44(7):1057–1067

    Article  CAS  Google Scholar 

  35. Sun JG, Wang Y, Chen ZT, Zhuo WL, Zhu B, Liao RX et al (2009) Detection of lymphangiogenesis in non-small cell lung cancer and its prognostic value. J Exp Clin Cancer Res 28(1):21

    Article  Google Scholar 

  36. Adachi Y, Nakamura H, Kitamura Y, Taniguchi Y, Araki K, Shomori K et al (2007) Lymphatic vessel density in pulmonary adenocarcinoma immunohistochemically evaluated with anti-podoplanin or anti-D2-40 antibody is correlated with lymphatic invasion or lymph node metastases. Pathol Int 57(4):171–177

    Article  CAS  Google Scholar 

  37. Kajita T, Ohta Y, Kimura K, Tamura M, Tanaka Y, Tsunezuka Y et al (2001) The expression of vascular endothelial growth factor C and its receptors in non-small cell lung cancer. Br J Cancer 85(2):255–260

    Article  CAS  Google Scholar 

  38. Thiele W, Sleeman JP (2006) Tumor-induced lymphangiogenesis: a target for cancer therapy? J Biotechnol 124(1):224–241

    Article  CAS  Google Scholar 

  39. Gabor S, Renner H, Popper H, Anegg U, Sankin O, Matzi V et al (2004) Invasion of blood vessels as significant prognostic factor in radically resected T1-3N0M0 non-small-cell lung cancer. Eur J Cardiothorac Surg 25:439–442

    Article  CAS  Google Scholar 

  40. Kessler R, Gasser B, Massard G, Roeslin N, Meyer P, Wihlm JM et al (1996) Blood vessel invasion is a major prognostic factor in resected non-small cell lung cancer. Ann Thorac Surg (62):1489–1493

    Article  CAS  Google Scholar 

  41. Wang J, Chen J, Chen X, Wang B, Li K, Bi J (2011) Blood vessel invasion as a strong independent prognostic indicator in non-small cell lung cancer: a systematic review and meta-analysis. PLoS One 6(12):e28844

    Article  CAS  Google Scholar 

  42. Wyckoff JB, Wang Y, Lin EY, Li J, Goswami S, Stanley ER et al (2007) Direct visualization of macrophage-assisted tumor cell intravasation in mammary tumors. Cancer Res 67(6):2649–2656

    Article  CAS  Google Scholar 

  43. Robinson BD, Sica GL, Liu YF, Rohan TE, Gertler FB, Condeelis JS, Jones JG (2009) Tumor microenvironment of metastasis in human breast carcinoma: a potential prognostic marker linked to hematogenous dissemination. Clin Cancer Res 15(7):2433–2441

    Article  CAS  Google Scholar 

  44. Regan E, Sibley RC, Cenik BK, Silva A, Girard L, Minna JD et al (2016) Identification of gene expression differences between lymphangiogenic and non-lymphangiogenic non-small cell lung cancer cell lines. PLoS One 11(3):e0150963

    Article  Google Scholar 

  45. Hirakawa S, Kodama S, Kunstfeld R, Kajiya K, Brown LF, Detmar M (2005) VEGF-A induces tumor and sentinel lymph node lymphangiogenesis and promotes lymphatic metastasis. J Exp Med 201(7):1089–1099

    Article  CAS  Google Scholar 

  46. Hirakawa S, Brown LF, Kodama S, Paavonen K, Alitalo K, Detmar M (2007) VEGF-C-induced lymphangiogenesis in sentinel lymph nodes promotes tumor metastasis to distant sites. Blood 109(3):1010–1017

    Article  CAS  Google Scholar 

  47. Olmeda D, Cerezo-Wallis D, Riveiro-Falkenbach E, Pennacchi PC, Contreras-Alcalde M, Ibarz N et al (2017) Whole-body imaging of lymphovascular niches identifies pre-metastatic roles of midkine. Nature 546(7660):676–680

    Article  CAS  Google Scholar 

  48. Morton DL (2012) Overview and update of the phase III Multicenter Selective Lymphadenectomy Trials (MSLT-I and MSLT-II) in melanoma. Clin Exp Metastasis 29(7):699–706

    Article  Google Scholar 

  49. McFadden DG, Papagiannakopoulos T, Taylor-Weiner A, Stewart C, Carter SL, Cibulskis K et al (2014) Genetic and clonal dissection of murine small cell lung carcinoma progression by genome sequencing. Cell 156(6):1298–1311

    Article  CAS  Google Scholar 

  50. Pereira ER, Kedrin D, Seano G, Gautier O, Meijer EFJ, Jones D et al (2018) Lymph node metastases can invade local blood vessels, exit the node, and colonize distant organs in mice. Science 359:1403–1407

    Article  CAS  Google Scholar 

  51. Brown M, Assen FP, Leithner A, Abe J, Schachner H, Asfour G et al (2018) Lymph node blood vessels provide exit routes for metastatic tumor cell dissemination in mice. Science 359:1408–1411

    Article  CAS  Google Scholar 

  52. Girard J, Moussion C, Forster R (2012) HEVs, lymphatics and homeostatic immune cell trafficking in lymph nodes. Nat Rev Immunol 12:762–773

    Article  CAS  Google Scholar 

  53. Maisel K, Sasso MS, Potin L, Swartz MA (2017) Exploiting lymphatic vessels for immunomodulation: rationale, opportunities, and challenges. Adv Drug Deliv Rev 114:43–59

    Article  CAS  Google Scholar 

  54. Lund AW, Duraes FV, Hirosue S, Raghavan VR, Nembrini C, Thomas SN et al (2012) VEGF-C promotes immune tolerance in B16 melanomas and cross-presentation of tumor antigen by lymph node lymphatics. Cell Rep 1(3):191–199

    Article  CAS  Google Scholar 

  55. Hirosue S, Vokali E, Raghavan VR, Rincon-Restrepo M, Lund AW, Corthesy-Henrioud P et al (2014) Steady-state antigen scavenging, cross-presentation, and CD8 + T cell priming: a new role for lymphatic endothelial cells. J Immunol 192(11):5002–5011

    Article  CAS  Google Scholar 

  56. Dieterich LC, Ikenberg K, Cetintas T, Kapaklikaya K, Hutmacher C, Detmar M (2017) Tumor-associated lymphatic vessels upregulate PDL1 to inhibit T-cell activation. Front Immunol 8:66

    Article  Google Scholar 

  57. Tewalt EF, Cohen JN, Rouhani SJ, Guidi CJ, Qiao H, Fahl SP et al (2012) Lymphatic endothelial cells induce tolerance via PD-L1 and lack of costimulation leading to high-level PD-1 expression on CD8 T cells. Blood 120(24):4772–4782

    Article  CAS  Google Scholar 

  58. Fankhauser M, Broggi MAS, Potin L, Bordry N, Jeanbart L, Lund AW et al (2017) Tumor lymphangiogenesis promotes T cell infiltration and potentiates immunotherapy in melanoma. Sci Transl Med 9(407):eaal4712

    Article  Google Scholar 

  59. Hendrix MJ, Seftor EA, Seftor RE, Chao J, Chu Y (2016) Tumor cell vascular mimicry: novel targeting opportunity in melanoma. Pharmacol Ther 159:83–92

    Article  CAS  Google Scholar 

  60. Lederberg J, McCray AT (2001) ‘Ome, sweet ‘omics—a genealogical treasury of words. Scientist 15(7):8–9

    Google Scholar 

  61. Greene J, Localzo J (2017) Putting the patient back together—social medicine, network medicine and the limits of reductionism. N Engl J Med 377(25):2493–2495

    Article  Google Scholar 

  62. Bhat R, Bissell MJ (2014) Of plasticity and specificity: dialectics of the microenvironment and macroenvironment and the organ phenotype. Wiley Interdiscip Rev Dev Biol 3(2):147–163

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Michael T. Dellinger or Marlys H. Witte.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dellinger, M.T., Witte, M.H. Lymphangiogenesis, lymphatic systemomics, and cancer: context, advances and unanswered questions. Clin Exp Metastasis 35, 419–424 (2018). https://doi.org/10.1007/s10585-018-9907-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-018-9907-9

Keywords

Navigation