Skip to main content

Advertisement

Log in

MUC1-mediated motility in breast cancer: a review highlighting the role of the MUC1/ICAM-1/Src signaling triad

  • Review
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

Breast cancer is the most common cancer in women with the leading cause of death being metastasis, the spread of cancer to distant organs. For those patients with high-risk estrogen receptor positive (ER+) breast cancer, an increased expression of the glycoprotein MUC1 is associated with resistance to anti-hormonal therapy, metastasis and death. Tumor cells may use MUC1 to metastasize by exploiting the vascular adhesion pathways used by leukocytes during the inflammatory response. MUC1 is a type 1 transmembrane protein whose cytoplasmic tail acts as a scaffold for several signaling pathways including the non-receptor kinase Src, a signaling molecule involved in cell differentiation, proliferation, adhesion and motility. This review will highlight our current knowledge of how MUC1/ICAM-1 binding can lead to the recruitment and activation of Src and propose a novel role for lipid raft microdomains in this promigratory signaling. Improved understanding of the mechanism of metastases and the underlying signaling cascade is a prerequisite to the discovery of therapeutic targets to prevent metastasis and death in ER+ breast cancer patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

MUC1:

Mucin 1

ICAM-1:

Intercellular adhesion molecule-1

ER+:

Estrogen receptor positive

ECD:

Extracellular domain

TMD:

Transmembrane domain

CT:

Cytoplasmic tail

CrkL:

CT10 regulator of kinase like

References

  1. Gruvberger S, Ringner M, Chen Y et al (2001) Estrogen receptor status in breast cancer is associated with remarkably distinct gene expression patterns. Cancer Res 61:5979–5984

    CAS  PubMed  Google Scholar 

  2. Perou CM, Sorlie T, Eisen MB et al (2000) Molecular portraits of human breast tumours. Nature 406:747–752

    CAS  PubMed  Google Scholar 

  3. Sotiriou C, Neo S, McShane L et al (2003) Breast cancer classification and prognosis based on gene expression profiles from a population-based study. Proc Natl Acad Sci USA 100:10393–10398. doi:10.1073/pnas.1732912100

    PubMed Central  CAS  PubMed  Google Scholar 

  4. Jumppanen M, Gruvberger-Saal S, Kauraniemi P et al (2007) Basal-like phenotype is not associated with patient survival in estrogen-receptor-negative breast cancers. Breast Cancer Res. 9:R16

    PubMed Central  PubMed  Google Scholar 

  5. Livasy C, Karaca G, Nanda R et al (2006) Phenotypic evaluation of the basal-like subtype of invasive breast carcinoma. Mod Pathol 19:264–271. doi:10.1038/modpathol.3800528

    CAS  PubMed  Google Scholar 

  6. Hugh J, Hanson J, Cheang MCU et al (2009) Breast cancer subtypes and response to docetaxel in node-positive breast cancer: use of an immunohistochemical definition in the BCIRG 001 trial. J Clin Oncol 27:1168–1176. doi:10.1200/JCO.2008.18.1024

    PubMed Central  CAS  PubMed  Google Scholar 

  7. van der Vegt B, de Roos MAJ, Peterse JL et al (2007) The expression pattern of MUC1 (EMA) is related to tumour characteristics and clinical outcome of invasive ductal breast carcinoma. Histopathology 51:322–335. doi:10.1111/j.1365-2559.2007.02757.x

    PubMed  Google Scholar 

  8. Abba MC, Nunez MI, Colussi AG, Croce MV, Segal-Eiras A, Aldaz CM (2006) GATA3 protein as a MUC1 transcriptional regulator in breast cancer cells. Breast Cancer Res 8:R64. doi:10.1186/bcr1617

    PubMed Central  PubMed  Google Scholar 

  9. Pitroda SP, Khodarev NN, Beckett MA, Kufe DW, Weichselbaum RR (2009) MUC1-induced alterations in a lipid metabolic gene network predict response of human breast cancers to tamoxifen treatment. Proc Natl Acad Sci USA 106:5837–5841

    PubMed Central  CAS  PubMed  Google Scholar 

  10. Rahn JJ, Dabbagh L, Pasdar M, Hugh JC (2001) The importance of MUC1 cellular localization in patients with breast carcinoma: an immunohistologic study of 71 patients and review of the literature. Cancer 91:1973–1982

    CAS  PubMed  Google Scholar 

  11. Rakha E, Boyce R, Abd El-Rehim D et al (2005) Expression of mucins (MUC1, MUC2, MUC3, MUC4, MUC5AC and MUC6) and their prognostic significance in human breast cancer. Mod Pathol 18:1295–1304. doi:10.1038/modpathol.3800445

    CAS  PubMed  Google Scholar 

  12. Sachdeva M, Mo Y (2010) MicroRNA-145 suppresses cell invasion and metastasis by directly targeting Mucin 1. Cancer Res 70:378–387. doi:10.1158/0008-5472.CAN-09-2021

    PubMed Central  CAS  PubMed  Google Scholar 

  13. Shen Q, Rahn JJ, Zhang J et al (2008) MUC1 initiates Src-CrkL-Rac1/Cdc42-mediated actin cytoskeletal protrusive motility after ligating intercellular adhesion molecule-1. Mol Cancer Res 6:555–567

    CAS  PubMed  Google Scholar 

  14. Hollingsworth M, Swanson B (2004) Mucins in cancer: protection and control of the cell surface. Nat Rev Cancer 4:45–60. doi:10.1038/nrc1251

    CAS  PubMed  Google Scholar 

  15. Gendler S (2001) MUC1, the renaissance molecule. J Mammary Gland Biol Neoplasia 6:339–353. doi:10.1023/A:1011379725811

    CAS  PubMed  Google Scholar 

  16. Al-Azawi D, Kelly G, Myers E et al (2006) CA 15-3 is predictive of response and disease recurrence following treatment in locally advanced breast cancer. BMC Cancer 6:220. doi:10.1186/1471-2407-6-220

    PubMed Central  PubMed  Google Scholar 

  17. Shimizu M, Yamauchi K (1982) Isolation and characterization of mucin-like glycoprotein in human milk fat globule membrane. J Biochem 91:515–524

    CAS  PubMed  Google Scholar 

  18. Gendler S, Taylor-Papadimitriou J, Duhig T, Rothbard J, Burchell J (1988) A highly immunogenic region of a human polymorphic epithelial mucin expressed by carcinomas is made up of tandem repeats. J Biol Chem 263:12820–12823

    CAS  PubMed  Google Scholar 

  19. Hilkens J, Buijs F (1988) Biosynthesis of Mam-6, an epithelial sialomucin—evidence for involvement of a rare proteolytic cleavage step in the endoplasmic-reticulum. J Biol Chem 263:4215–4222

    CAS  PubMed  Google Scholar 

  20. Gendler SJ, Lancaster CA, Taylor-Papadimitriou J et al (1990) Molecular cloning and expression of human tumor-associated polymorphic epithelial mucin. J Biol Chem 265:15286–15293

    CAS  PubMed  Google Scholar 

  21. Parry S, Hanisch F, Leir S et al (2006) N-glycosylation of the MUC1 mucin in epithelial cells and secretions. Glycobiology 16:623–634. doi:10.1093/glycob/cwj110

    CAS  PubMed  Google Scholar 

  22. Schwarz F, Aebi M (2011) Mechanisms and principles of N-linked protein glycosylation. Curr Opin Struct Biol 21:576–582. doi:10.1016/j.sbi.2011.08.005

    CAS  PubMed  Google Scholar 

  23. Levitin F, Stern O, Weiss M et al (2005) The MUC1 SEA module is a self-cleaving domain. J Biol Chem 280:33374–33386. doi:10.1074/jbc.M506047200

    CAS  PubMed  Google Scholar 

  24. Ligtenberg M, Kruijshaar L, Buijs F, Vanmeijer M, Litvinov S, Hilkens J (1992) Cell-associated episialin is a complex containing 2 proteins derived from a common precursor. J Biol Chem 267:6171–6177

    CAS  PubMed  Google Scholar 

  25. Bork P, Patthy L (1995) The sea module—a new extracellular domain associated with O-glycosylation. Protein Sci 4:1421–1425

    PubMed Central  CAS  PubMed  Google Scholar 

  26. Macao B, Johansson D, Hansson G, Hard T (2006) Autoproteolysis coupled to protein folding in the SEA domain of the membrane-bound MUC1 mucin. Nat Struct Mol Biol 13:71–76. doi:10.1038/nsmb1035

    CAS  PubMed  Google Scholar 

  27. Gendler SJ, Spicer AP (1995) Epithelial mucin genes. Annu Rev Physiol 57:607–634

    CAS  PubMed  Google Scholar 

  28. Litvinov S, Hilkens J (1993) The epithelial sialomucin, episialin, is sialylated during recycling. J Biol Chem 268:21364–21371

    CAS  PubMed  Google Scholar 

  29. Bansil R, Turner BS (2006) Mucin structure, aggregation, physiological functions and biomedical applications. Curr Opin Colloid Interface Sci 11:164–170. doi:10.1016/j.cocis.2005.11.001

    CAS  Google Scholar 

  30. Burchell J, Mungul A, Taylor-Papadimitriou J (2001) O-linked glycosylation in the mammary gland: changes that occur during malignancy. J Mammary Gland Biol Neoplasia 6:355–364. doi:10.1023/A:1011331809881

    CAS  PubMed  Google Scholar 

  31. Brockhausen I, Yang J, Burchell J, Whitehouse C, Taylor-Papadimitriou J (1995) Mechanisms underlying aberrant glycosylation of Muc1 mucin in breast-cancer cells. Eur J Biochem 233:607–617. doi:10.1111/j.1432-1033.1995.607_2.x

    CAS  PubMed  Google Scholar 

  32. Sawada T, Ho J, Chung Y, Sowa M, Kim Y (1994) E-selectin binding by pancreatic tumor-cells is inhibited by cancer sera. Int J Cancer 57:901–907. doi:10.1002/ijc.2910570621

    CAS  PubMed  Google Scholar 

  33. Zhang K, Baeckstrom D, Brevinge H, Hansson G (1997) Comparison of sialyl-Lewis a carrying CD43 and MUC1 mucins secreted from a colon carcinoma cell line for E-selectin binding and inhibition of leukocyte adhesion. Tumour Biol 18:175–187

    CAS  PubMed  Google Scholar 

  34. Geng Y, Yeh K, Takatani T, King MR (2012) Three to tango: muc1 as a ligand for both E-selectin and ICAM-1 in the breast cancer metastatic cascade. Front Oncol 2:76

    PubMed Central  PubMed  Google Scholar 

  35. Zhao Q, Guo X, Nash GB et al (2009) Circulating galectin-3 promotes metastasis by modifying MUC1 localization on cancer cell surface. Cancer Res 69:6799–6806. doi:10.1158/0008-5472.CAN-09-1096

    PubMed Central  CAS  PubMed  Google Scholar 

  36. Ramasamy S, Duraisamy S, Barbashov S, Kawano T, Kharbanda S, Kufe D (2007) The MUC1 and galectin-3 oncoproteins function in a MicroRNA-dependent regulatory loop. Mol Cell 27:992–1004. doi:10.1016/j.molcel.2007.07.031

    PubMed Central  CAS  PubMed  Google Scholar 

  37. Yu L, Andrews N, Zhao Q et al (2007) Galectin-3 interaction with Thomsen-Friedenreich disaccharide on cancer-associated MUC1 causes increased cancer cell endothelial adhesion. J Biol Chem 282:773–781. doi:10.1074/jbc.M606862200

    CAS  PubMed  Google Scholar 

  38. Tanida S, Mori Y, Ishida A, Akita K, Nakada H (2014) Galectin-3 binds to MUC1-N-terminal domain and triggers recruitment of β-catenin in MUC1-expressing mouse 3T3 cells. Biochim Biophys Acta 1840:1790–1797

    CAS  PubMed  Google Scholar 

  39. Li Y, Ren J, Yu W et al (2001) The epidermal growth factor receptor regulates interaction of the human DF3/MUC1 carcinoma antigen with c-Src and beta-catenin. J Biol Chem 276:35239–35242

    CAS  PubMed  Google Scholar 

  40. Zhao Y, Planas-Silva MD (2009) Mislocalization of cell-cell adhesion complexes in tamoxifen-resistant breast cancer cells with elevated c-Src tyrosine kinase activity. Cancer Lett 275:204–212. doi:10.1016/j.canlet.2008.10.022

    CAS  PubMed  Google Scholar 

  41. Fontenot J, Tjandra N, Bu D, Ho C, Montelaro R, Finn O (1993) Biophysical characterization of One-tandem, 2-tandem, and 3-tandem repeats of human mucin (Muc-1) protein core. Cancer Res 53:5386–5394

    CAS  PubMed  Google Scholar 

  42. Patton S, Gendler SJ, Spicer AP (1995) The epithelial mucin, MUC1, of milk, mammary gland and other tissues. Biochim Biophys Acta 1241:407–423

    CAS  PubMed  Google Scholar 

  43. Fontenot J, Mariappan S, Catasti P, Domenech N, Finn O, Gupta G (1995) Structure of a tumor-associated antigen containing a tandemly repeated immunodominant epitope. J Biomol Struct Dyn 13:245–260

    CAS  PubMed  Google Scholar 

  44. Kam JL, Regimbald LH, Hilgers JH et al (1998) MUC1 synthetic peptide inhibition of intercellular adhesion molecule-1 and MUC1 binding requires six tandem repeats. Cancer Res 58:5577–5581

    CAS  PubMed  Google Scholar 

  45. Schuman J, Campbell A, Koganty R, Longenecker B (2003) Probing the conformational and dynamical effects of O-glycosylation within the immunodominant region of a MUC1 peptide tumor antigen. J Pept Res 61:91–108. doi:10.1034/j.1399-3011.2003.00031.x

    CAS  PubMed  Google Scholar 

  46. Staubach S, Razawi H, Hanisch FG (2009) Proteomics of MUC1-containing lipid rafts from plasma membranes and exosomes of human breast carcinoma cells MCF-7. Proteomics 9:2820–2835

    CAS  PubMed  Google Scholar 

  47. Simons K, Ikonen E (1997) Functional rafts in cell membranes. Nature 387:569–572. doi:10.1038/42408

    CAS  PubMed  Google Scholar 

  48. Simons K, Toomre D (2000) Lipid rafts and signal transduction. Nat Rev Mol Cell Biol 1:31–39. doi:10.1038/35036052

    CAS  PubMed  Google Scholar 

  49. Casadio R, Fariselli P, Taroni C, Compiani M (1996) A predictor of transmembrane alpha-helix domains of proteins based on neural networks. Eur Biophys J 24:165–178

    CAS  PubMed  Google Scholar 

  50. Spicer AP, Parry G, Patton S, Gendler SJ (1991) Molecular cloning and analysis of the mouse homologue of the tumor-associated mucin, MUC1, reveals conservation of potential O-glycosylation sites, transmembrane, and cytoplasmic domains and a loss of minisatellite-like polymorphism. J Biol Chem 266:15099–15109

    CAS  PubMed  Google Scholar 

  51. Handa K, Jacobs F, Longenecker B, Hakomori S (2001) Association of MUC-1 and PSGL-1 with low-density microdomain in T-lymphocytes: a preliminary note. Biochem Biophys Res Commun 285:788–794. doi:10.1006/bbrc.2001.5225

    CAS  PubMed  Google Scholar 

  52. Scheiffele P, Roth M, Simons K (1997) Interaction of influenza virus haemagglutinin with sphingolipid-cholesterol membrane domains via its transmembrane domain. EMBO J 16:5501–5508. doi:10.1093/emboj/16.18.5501

    PubMed Central  CAS  PubMed  Google Scholar 

  53. Hattrup CL, Gendler SJ (2008) Structure and function of the cell surface (tethered) mucins. Annu Rev Physiol 70:431–457. doi:10.1146/annurev.physiol.70.113006.100659

    CAS  PubMed  Google Scholar 

  54. Kinlough CL, McMahan RJ, Poland PA et al (2006) Recycling of MUC1 is dependent on its palmitoylation. J Biol Chem 281:12112–12122

    CAS  PubMed  Google Scholar 

  55. Pemberton L, Rughetti A, TaylorPapadimitriou J, Gendler S (1996) The epithelial mucin MUC1 contains at least two discrete signals specifying membrane localization in cells. J Biol Chem 271:2332–2340

    CAS  PubMed  Google Scholar 

  56. Levental I, Lingwood D, Grzybek M, Coskun U, Simons K (2010) Palmitoylation regulates raft affinity for the majority of integral raft proteins. Proc Natl Acad Sci USA 107:22050–22054

    PubMed Central  CAS  PubMed  Google Scholar 

  57. Leng Y, Cao C, Ren J et al (2007) Nuclear import of the MUC1-C oncoprotein is mediated by nucleoporin Nup62. J Biol Chem 282:19321–19330. doi:10.1074/jbc.M703222200

    CAS  PubMed  Google Scholar 

  58. Raina D, Ahmad R, Joshi MD et al (2009) Direct Targeting of the mucin 1 oncoprotein blocks survival and tumorigenicity of human breast carcinoma cells. Cancer Res 69:5133–5141. doi:10.1158/0008-5472.CAN-09-0854

    PubMed Central  CAS  PubMed  Google Scholar 

  59. Raina D, Ahmad R, Rajabi H, Panchamoorthy G, Kharbanda S, Kufe D (2012) Targeting cysteine-mediated dimerization of the MUC1-C oncoprotein in human cancer cells. Int J Oncol 40:1643–1649

    PubMed Central  CAS  PubMed  Google Scholar 

  60. Bernier AJ, Zhang J, Lillehoj E, Shaw AR, Gunasekara N, Hugh JC (2011) Non-cysteine linked MUC1 cytoplasmic dimers are required for Src recruitment and ICAM-1 binding induced cell invasion. Mol Cancer 10:93

    PubMed Central  CAS  PubMed  Google Scholar 

  61. Rahn J, Shen Q, Mah B, Hugh J (2004) MUC1 initiates a calcium signal after ligation by intercellular adhesion molecule-1. J Biol Chem 279:29386–29390. doi:10.1074/jbc.C400010200

    CAS  PubMed  Google Scholar 

  62. Kufe DW (2013) MUC1-C oncoprotein as a target in breast cancer: activation of signaling pathways and therapeutic approaches. Oncogene 32:1073–1081. doi:10.1038/onc.2012.158

    PubMed Central  CAS  PubMed  Google Scholar 

  63. Li Y, Kuwahara H, Ren J, Wen G, Kufe D (2001) The c-Src tyrosine kinase regulates signaling of the human DF3/MUC1 carcinoma-associated antigen with GSK3 beta and beta-catenin. J Biol Chem 276:6061–6064. doi:10.1074/jbc.C000754200

    CAS  PubMed  Google Scholar 

  64. Rahn J, Chow J, Horne G et al (2005) MUC1 mediates transendothelial migration in vitro by ligating endothelial cell ICAM-1. Clin Exp Metastasis 22:475–483. doi:10.1007/s10585-005-3098-x

    CAS  PubMed  Google Scholar 

  65. Gunasekara N, Sykes B, Hugh J (2012) Characterization of a novel weak interaction between MUC1 and Src-SH3 using nuclear magnetic resonance spectroscopy. Biochem Biophys Res Commun 421:832–836

    CAS  PubMed  Google Scholar 

  66. Dustin M, Rothlein R, Bhan A, Dinarello C, Springer T (1986) Induction by Il-1 and interferon-gamma: tissue distribution, biochemistry, and function of a natural adherence molecule (Icam-1). J Immunol 137:245–254

    CAS  PubMed  Google Scholar 

  67. Wyble C, Desai T, Clark E, Hynes K, Gewertz B (1996) Physiologic concentrations of TNF alpha and IL-1 beta released from reperfused human intestine upregulate E-selectin and ICAM-1. J Surg Res 63:333–338. doi:10.1006/jsre.1996.0271

    CAS  PubMed  Google Scholar 

  68. Staunton D, Marlin S, Stratowa C, Dustin M, Springer T (1988) Primary structure of Icam-1 demonstrates interaction between members of the immunoglobulin and integrin supergene families. Cell 52:925–933. doi:10.1016/0092-8674(88)90434-5

    CAS  PubMed  Google Scholar 

  69. Staunton D, Dustin M, Erickson H, Springer T (1990) The arrangement of the immunoglobulin-like domains of Icam-1 and the binding-sites for Lfa-1 and rhinovirus. Cell 61:243–254. doi:10.1016/0092-8674(90)90805-O

    CAS  PubMed  Google Scholar 

  70. Miller J, Knorr R, Ferrone M, Houdei R, Carron C, Dustin M (1995) Intercellular-adhesion molecule-1 dimerization and its consequences for adhesion mediated by lymphocyte function associated-1. J Exp Med 182:1231–1241. doi:10.1084/jem.182.5.1231

    CAS  PubMed  Google Scholar 

  71. Yang Y, Jun C, Liu J et al (2004) Structural basis for dimerization of ICAM-1 on the cell surface. Mol Cell 14:269–276. doi:10.1016/S1097-2765(04)00204-7

    CAS  PubMed  Google Scholar 

  72. Jun C, Carman C, Redick S, Shimaoka M, Erickson H, Springer T (2001) Ultrastructure and function of dimeric, soluble intercellular adhesion molecule-1 (ICAM-1). J Biol Chem 276:29019–29027. doi:10.1074/jbc.M103394200

    CAS  PubMed  Google Scholar 

  73. Tilghman R, Hoover R (2002) E-selectin and ICAM-1 are incorporated into detergent-insoluble membrane domains following clustering in endothelial cells. FEBS Lett 525:83–87. doi:10.1016/S0014-5793(02)03070-3

    CAS  PubMed  Google Scholar 

  74. Oh H, Lee S, Na B et al (2007) RKIKK motif in the intracellular domain is critical for spatial and dynamic organization of ICAM-1: functional implication for the leukocyte adhesion and transmigration. Mol Biol Cell 18:2322–2335. doi:10.1091/mbc.E06-08-0744

    PubMed Central  CAS  PubMed  Google Scholar 

  75. Heiska L, Alfthan K, Gronholm M, Vilja P, Vaheri A, Carpen O (1998) Association of ezrin with intercellular adhesion molecule-1 and -2 (ICAM-1 and ICAM-2)—regulation by phosphatidylinositol 4,5-bisphosphate. J Biol Chem 273:21893–21900. doi:10.1074/jbc.273.34.21893

    CAS  PubMed  Google Scholar 

  76. Regimbald LH, Pilarski LM, Longenecker BM, Reddish MA, Zimmermann G, Hugh JC (1996) The breast mucin MUC1 as a novel adhesion ligand for endothelial intercellular adhesion molecule 1 in breast cancer. Cancer Res 56:4244–4249

    CAS  PubMed  Google Scholar 

  77. Hayashi T, Takahashi T, Motoya S et al (2001) MUC1 mucin core protein binds to the domain 1 of ICAM-1. Digestion 63:87–92

    CAS  PubMed  Google Scholar 

  78. Etienne-Manneville S, Manneville J, Adamson P, Wilbourn B, Greenwood J, Couraud P (2000) ICAM-1-coupled cytoskeletal rearrangements and transendothelial lymphocyte migration involve intracellular calcium signaling in brain endothelial cell lines. J Immunol 165:3375–3383

    CAS  PubMed  Google Scholar 

  79. Feldner JC, Brandt BH (2002) Cancer cell motility—on the road from c-erbB-2 receptor steered signaling to actin reorganization. Exp Cell Res 272:93–108. doi:10.1006/excr.2001.5385

    CAS  PubMed  Google Scholar 

  80. Parsons S, Parsons J (2004) Src family kinases, key regulators of signal transduction. Oncogene 23:7906–7909. doi:10.1038/sj.onc.1208160

    CAS  PubMed  Google Scholar 

  81. Roskoski R (2004) Src protein-tyrosine kinase structure and regulation. Biochem Biophys Res Commun 324:1155–1164. doi:10.1016/j.bbrc.2004.09.171

    CAS  PubMed  Google Scholar 

  82. Playford M, Schaller M (2004) The interplay between Src and integrins in normal and tumor biology. Oncogene 23:7928–7946. doi:10.1038/sj.onc.1208080

    CAS  PubMed  Google Scholar 

  83. Patwardhan P, Resh MD (2010) Myristoylation and membrane binding regulate c-Src stability and kinase activity. Mol Cell Biol 30:4094–4107. doi:10.1128/MCB.00246-10

    PubMed Central  CAS  PubMed  Google Scholar 

  84. Boggon T, Eck M (2004) Structure and regulation of Src family kinases. Oncogene 23:7918–7927. doi:10.1038/sj.onc.1208081

    CAS  PubMed  Google Scholar 

  85. Li S (2005) Specificity and versatility of SH3 and other proline-recognition domains: structural basis and implications for cellular signal transduction. Biochem J 390:641–653. doi:10.1042/BJ20050411

    PubMed Central  CAS  PubMed  Google Scholar 

  86. Thomas S, Brugge J (1997) Cellular functions regulated by Src family kinases. Annu Rev Cell Dev Biol 13:513–609. doi:10.1146/annurev.cellbio.13.1.513

    CAS  PubMed  Google Scholar 

  87. Rossy J, Owen DM, Williamson DJ, Yang Z, Gaus K (2013) Conformational states of the kinase Lck regulate clustering in early T cell signaling. Nat Immunol 14:82–89. doi:10.1038/ni.2488

    CAS  PubMed  Google Scholar 

  88. Yadav SS, Miller WT (2007) Cooperative activation of Src family kinases by SH3 and SH2 ligands. Cancer Lett 257:116–123. doi:10.1016/j.canlet.2007.07.012

    PubMed Central  CAS  PubMed  Google Scholar 

  89. Alexandropoulos K, Baltimore D (1996) Coordinate activation of c-Src by SH3- and SH2-binding sites on a novel, p130(Cas)-related protein, Sin. Genes Dev 10:1341–1355. doi:10.1101/gad.10.11.1341

    CAS  PubMed  Google Scholar 

  90. Muller A, Homey B, Soto H et al (2001) Involvement of chemokine receptors in breast cancer metastasis. Nature 410:50–56. doi:10.1038/35065016

    CAS  PubMed  Google Scholar 

  91. Glinskii O, Huxley V, Glinsky G, Pienta K, Raz A, Glinsky V (2005) Mechanical entrapment is insufficient and intercellular adhesion is essential for metastatic cell arrest in distant organs. Neoplasia 7:522–527. doi:10.1593/neo.04646

    PubMed Central  CAS  PubMed  Google Scholar 

  92. Reglero-Real N, Marcos-Ramiro B, Millan J (2012) Endothelial membrane reorganization during leukocyte extravasation. Cell Mol Life Sci 69:3079–3099. doi:10.1007/s00018-012-0987-4

    CAS  PubMed  Google Scholar 

  93. Somers W, Tang J, Shaw G, Camphausen R (2000) Insights into the molecular basis of leukocyte tethering and rolling revealed by structures of P- and E-selectin bound to SLe(X) and PSGL-1. Cell 103:467–479. doi:10.1016/S0092-8674(00)00138-0

    CAS  PubMed  Google Scholar 

  94. Jun C, Shimaoka M, Carman C, Takagi J, Springer T (2001) Dimerization and the effectiveness of ICAM-1 in mediating LFA-l-dependent adhesion. Proc Natl Acad Sci USA 98:6830–6835. doi:10.1073/pnas.121186998

    PubMed Central  CAS  PubMed  Google Scholar 

  95. Sanders V, Vitetta E (1991) B-cell-associated Lfa-1 and T-cell-associated Icam-1 transiently cluster in the area of contact between interacting cells. Cell Immunol 132:45–55. doi:10.1016/0008-8749(91)90005-V

    CAS  PubMed  Google Scholar 

  96. Yang L, Kowalski J, Zhan X, Thomas S, Luscinskas F (2006) Endothelial cell cortactin phosphorylation by src contributes to polymorphonuclear leukocyte transmigration in vitro. Circ Res 98:394–402. doi:10.1161/01.RES.0000201958.59020.1a

    CAS  PubMed  Google Scholar 

  97. Smith A, Carrasco Y, Stanley P, Kieffer N, Batista F, Hogg N (2005) A talin-dependent LFA-1 focal zone is formed by rapidly migrating T lymphocytes. J Cell Biol 170:141–151. doi:10.1083/jcb.200412032

    PubMed Central  CAS  PubMed  Google Scholar 

  98. Liu G, Place AT, Chen Z et al (2012) ICAM-1-activated Src and eNOS signaling increase endothelial cell surface PECAM-1 adhesivity and neutrophil transmigration. Blood 120:1942–1952. doi:10.1182/blood-2011-12-397430

    PubMed Central  CAS  PubMed  Google Scholar 

  99. Birge RB, Kalodimos C, Inagaki F, Tanaka S (2009) Crk and CrkL adaptor proteins: networks for physiological and pathological signaling. Cell Commun Signal 7:13. doi:10.1186/1478-811X-7-13

    PubMed Central  PubMed  Google Scholar 

  100. Li L, Guris D, Okura M, Imamoto A (2003) Translocation of CrkL to focal adhesions mediates integrin-induced migration downstream of Src family kinases. Mol Cell Biol 23:2883–2892. doi:10.1128/MCB.23.8.2883-2892.2003

    PubMed Central  CAS  PubMed  Google Scholar 

  101. Bennett R, Jarvela T, Engelhardt P et al (2001) Mucin MUC1 is seen in cell surface protrusions together with ezrin in immunoelectron tomography and is concentrated at tips of filopodial protrusions in MCF-7 breast carcinoma cells. J Histochem Cytochem 49:67–77

    CAS  PubMed  Google Scholar 

  102. Bretscher A, Edwards K, Fehon R (2002) ERM proteins and merlin: integrators at the cell cortex. Nat Rev Mol Cell Biol 3:586–599. doi:10.1038/nrm882

    CAS  PubMed  Google Scholar 

  103. Lindfors HE, Venkata BS, Drijfhout JW, Ubbink M (2011) Linker length dependent binding of a focal adhesion kinase derived peptide to the Src SH3-SH2 domains. FEBS Lett 585:601–605. doi:10.1016/j.febslet.2011.01.026

    CAS  PubMed  Google Scholar 

  104. Hitosugi T, Sato M, Sasaki K, Urnezawa Y (2007) Lipid raft-specific knockdown of src family kinase activity inhibits cell adhesion and cell cycle progression of breast cancer cells. Cancer Res 67:8139–8148. doi:10.1158/0008-5472.CAN-06-4539

    CAS  PubMed  Google Scholar 

  105. Sen B, Johnson FM (2011) Regulation of Src family kinases in human cancers. J Signal Transduct 2011:865819. doi:10.1155/2011/865819

    PubMed Central  PubMed  Google Scholar 

  106. Resh MD (2006) Trafficking and signaling by fatty-acylated and prenylated proteins. Nat Chem Biol 2:584–590. doi:10.1038/nchembio834

    CAS  PubMed  Google Scholar 

  107. Resh MD (2006) Palmitoylation of ligands, receptors, and intracellular signaling molecules. Sci STKE 359:re14

    Google Scholar 

  108. Harder T, Scheiffele P, Verkade P, Simons K (1998) Lipid domain structure of the plasma membrane revealed by patching of membrane components. J Cell Biol 141:929–942. doi:10.1083/jcb.141.4.929

    PubMed Central  CAS  PubMed  Google Scholar 

  109. Sezgin E, Kaiser H, Baumgart T, Schwille P, Simons K, Levental I (2012) Elucidating membrane structure and protein behavior using giant plasma membrane vesicles. Nat Protoc 7:1042–1051. doi:10.1038/nprot.2012.059

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge funding from the Lilian McCullough Chair in Breast Cancer Research, the Breast Cancer Society of Canada, the Department of Defense (CDMRP), the Canadian Breast Cancer Research Alliance (NCIC) and the Canadian Breast Cancer Foundation-Prairies/NWT Region.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Judith Hugh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haddon, L., Hugh, J. MUC1-mediated motility in breast cancer: a review highlighting the role of the MUC1/ICAM-1/Src signaling triad. Clin Exp Metastasis 32, 393–403 (2015). https://doi.org/10.1007/s10585-015-9711-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-015-9711-8

Keywords

Navigation