Skip to main content

Advertisement

Log in

Epigenetic variations in breast cancer progression to lymph node metastasis

  • Research Paper
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

Breast cancer is a heterogeneous disease characterized by the accumulation of genetic and epigenetic alterations that contribute to the development of regional and distant metastases. Lymph node metastasis (LNM) status is the single most important prognostic factor. Metastatic cancer cells share common molecular alterations with those of the primary tumor, but in addition, they develop distinct changes that allow the cancer to progress. There is an urgent need for molecular studies which focus on identifying genomic and epigenomic markers that can predict the progression to metastasis. The objective of this study was to identify epigenetic similarities and differences between paired primary breast tumor (PBT) and LNM. We employed Methylation-Specific-MLPA (Multiplex ligation-dependent probe amplification) to assess the methylation status of 33 cancer-related genes in a cohort of 50 paired PBT and LNM specimens. We found that the methylation index, which represents the degree of aberrantly methylated genes in a specimen, was maintained during the progression to LNM. However, some genes presented differential methylation profiles. Interestingly, PAX6 presented a significant negative correlation between paired PBT and LNM (p = 0.03), which indicated a switch from methylated to unmethylated status in the progression from PBT to LNM. We further identified that the methylation status of PAX6 on the identified CpG site functionally affected the expression of PAX6 at the mRNA level. Our study unraveled significant epigenetic changes during the progression from PBT to LNM, which may contribute to improved prognosis, prediction and therapeutic management of metastatic breast cancer patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

PBT:

Primary breast tumor

LNM:

Lymph node metastasis

MS-MLPA:

Methyl-specific multiplex ligation-dependent probe amplification

PAX6:

Paired box 6

CTC:

Circulating tumor cells

IHQ:

Immunohistochemistry

ER:

Estrogen receptor

PR:

Progesterone receptor

HER2:

Human epidermal growth factor receptor 2

MI:

Methylation index

MD:

Methylation differences

References

  1. Siegel R, Ma J, Zou Z, Jemal A (2014) Cancer Statistics. J Clin 64:9–29

    Article  Google Scholar 

  2. Senkus E, Kyriakides S, Penault-Llorea F, Poortmans P, Thompson A, Zackrisson S, Cardoso F, ESMO Guidelines Working Group (2013) Primary breast cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow up. Ann Oncol 24:7–23

    Article  Google Scholar 

  3. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cel 144:646–674

    Article  CAS  Google Scholar 

  4. Taback B, Hoon DS (2004) Circulating nucleic acids in plasma and serum: past, present and future. Curr Opin Mol Ther 6:273–278

    CAS  PubMed  Google Scholar 

  5. Rykova EY (2008) Methylation-based analysis of circulating DNA for breast tumor screening. Ann NY Acad Sci 1137(1):232–235

    Article  CAS  PubMed  Google Scholar 

  6. Esteller M, Fraga MF, Guo M, Garcia-Foncillas J, Hedenfalk I, Godwin AK, Trojan J, Vaurs-Barriere C, Bignon YJ, Ramus S, Benitez J, Caldes T, Akiyama Y, Yuasa Y, Launonen V, Canal MJ, Rodriguez R, Capella G, Peinado MA, Borg A, Aaltonen LA, Ponder BA, Baylin SB, Herman JG (2001) DNA methylation patterns in hereditary human cancers mimic sporadic tumorigenesis. Hum Mol Genet 10:3001–3007

    Article  CAS  PubMed  Google Scholar 

  7. Moelans CB, Verschuur-Maes AH, van Diest PJ (2011) Frequent promoter hypermethylation of BRCA2, CDH13, MSH6, PAX5, PAX6 and WT1 in ductal carcinoma in situ and invasive breast cancer. J Pathol 225:222–231

    Article  CAS  PubMed  Google Scholar 

  8. Lindner DJ, Wu Y, Haney R, Jacobs BS, Fruehauf JP, Tuthill R, Borden EC (2013) Thrombospondin-1 expression in melanoma is blocked by methylation and targeted reversal by 5-Aza-deoxycytidine suppresses angiogenesis. Matrix Biol 32:123–132

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Widschwendter M (2001) Epigenetic downregulation of the retinoic acid receptor-beta2 gene in breast cancer. J Mammary Gland Biol Neoplas 6(2):193–201

    Article  CAS  Google Scholar 

  10. Bergman Y, Cedar H (2013) DNA methylation dynamics in health and disease. Nat Struct Mol Biol 20:274–281

    Article  CAS  PubMed  Google Scholar 

  11. Flanagan JM, Cocciardi S, Waddell N, Johnstone CN, Marsh A, Henderson S, Simpson P, Da Silva L, Khanna K, Lakhani S, Boshoff C, Chenevix-Trench G (2010) DNA methylome of familial breast cancer identifies distinct profiles defined by mutation status. Am J Hum Genet 86:420–433

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Marzese DM, Hoon DS, Chong KK, Gago FE, Orozco JI, Tello OM, Vargas-Roig LM, Roque M (2012) DNA methylation index and methylation profile of invasive ductal breast tumors. J Mol Diagn 14:613–622

    Article  CAS  PubMed  Google Scholar 

  13. Twelves D, Nerurkar A, Osin P, Dexter T, Ward A, Gui GP, Isacke CM (2013) DNA promoter hypermethylation profiles in breast duct fluid. Breast Cancer Res Treat 139:341–350

    Article  CAS  PubMed  Google Scholar 

  14. Sighoko D, Liu J, Hou N, Gustafson P, Huo D (2014) Discordance in hormone receptor status among primary, metastatic, and second primary breast cancers: biological difference or misclassification? Oncologist 19:592–601

    Article  PubMed  Google Scholar 

  15. Yao ZX, Lu LJ, Wang RJ, Jin LB, Liu SC, Li HY, Ren GS, Wu KN, Wang DL, Kong LQ (2014) Discordance and clinical significance of ER, PR, and HER2 status between primary breast cancer and synchronous axillary lymph node metastasis. Med Oncol 31:1–7

    Google Scholar 

  16. Aurilio G, Disalvatore D, Pruneri G, Bagnardi V, Viale G, Curigliano G, Adamoli L, Munzone E, Sciandivasci A, De Vita F, Goldhirsch A, Nole F (2014) A meta-analysis of oestrogen receptor, progesterone receptor and human epidermal growth factor receptor 2 discordance between primary breast cancer and metastases. Eur J. Cancer 50:277–289

    Article  CAS  PubMed  Google Scholar 

  17. Ibrahim T, Farolfi A, Scarpi E, Mercatali L, Medri L, Ricci M, Nanni O, Serra L, Amadori D (2013) Hormonal receptor, human epidermal growth factor receptor-2, and Ki67 discordance between primary breast cancer and paired metastases: clinical impact. Oncology 84:150–157

    Article  CAS  PubMed  Google Scholar 

  18. Marzese DM, Gago FE, Vargas-Roig LM, Roque M (2010) Simultaneous analysis of the methylation profile of 26 cancer related regions in invasive breast carcinomas by MS-MLPA and drMS-MLPA. Mol Cell Probes 24:271–280

    Article  CAS  PubMed  Google Scholar 

  19. Feng W, Orlandi R, Zhao N, Carcangiu ML, Tagliabue E, Xu J, Bast RC Jr, Yu Y (2010) Tumor suppressor genes are frequently methylated in lymph node metastases of breast cancers. BMC Cancer 10:378

    Article  PubMed Central  PubMed  Google Scholar 

  20. Metge BJ, Frost AR, King JA, Dyess DL, Welch DR, Samant RS, Shevde LA (2008) Epigenetic silencing contributes to the loss of BRMS1 expression in breast cancer. Clin Exp Metastasis 25:753–763

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Rivenbark AG, Livasy CA, Boyd CE, Keppler D, Coleman WB (2007) Methylation-dependent silencing of CST6 in primary human breast tumors and metastatic lesions. Exp Mol Pathol 83:188–197

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Alevizos L, Kataki A, Derventzi A, Gomatos I, Loutraris C, Gloustianou G, Manouras A, Konstadoulakis M, Zografos G (2014) Breast cancer nodal metastasis correlates with tumor and lymph node methylation profiles of Caveolin-1 and CXCR4. Clin Exp Metastasis 31:511–520

    Article  CAS  PubMed  Google Scholar 

  23. Skryabin NA, Tolmacheva EN, Lebedev IN, Zavyalova MV, Slonimskaya EM, Cherdyntseva NV (2013) Dynamics of aberrant methylation of futional groups of genes in progression of breast. Cancer Mol Biol 47:302–310

    Google Scholar 

  24. Walther C, Gruss P (1991) Pax-6, a murine paired box gene, is expressed in the developing CNS. Development 113:1435–1449

    CAS  PubMed  Google Scholar 

  25. Huang BS, Luo QZ, Han Y, Li XB, Cao LJ, Wu LX (2013) microRNA-223 promotes the growth and invasion of glioblastoma cells by targeting tumor suppressor PAX6. Oncol Rep 30:2263–2269

    CAS  PubMed  Google Scholar 

  26. Li Y, Li Y, Liu Y, Xie P, Li F, Li G (2014) PAX6, a novel target of microRNA-7, promotes cellular proliferation and invasion in human colorectal cancer cells. Dig Dis Sci 59:598–606

    Article  CAS  PubMed  Google Scholar 

  27. Zhao X, Yue W, Zhang L, Ma L, Jia W, Qian Z, Zhang C, Wang Y (2014) Downregulation of PAX6 by shRNA inhibits proliferation and cell cycle progression of human non-small cell lung cancer cell lines. PLoS One 9:e85738

    Article  PubMed Central  PubMed  Google Scholar 

  28. Wang J, Wang X, Wu G, Hou D, Hu Q (2013) MiR-365b-3p, down-regulated in retinoblastoma, regulates cell cycle progression and apoptosis of human retinoblastoma cells by targeting PAX6. FEBS Lett 587:1779–1786

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was partially funded by the National University of Cuyo, Mendoza, Argentina and the argentine National Cancer Institute. We thank to Nellie Nelson for her critical revision of our manuscript. DMM was supported by the Margie and Robert E. Petersen Foundation.

Conflict of interest

The authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Roqué.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Urrutia, G., Laurito, S., Marzese, D.M. et al. Epigenetic variations in breast cancer progression to lymph node metastasis. Clin Exp Metastasis 32, 99–110 (2015). https://doi.org/10.1007/s10585-015-9695-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-015-9695-4

Keywords

Navigation