Skip to main content

Advertisement

Log in

Combined treatment with paclitaxel and suramin prevents the development of metastasis by inhibiting metastatic colonization of circulating tumor cells

  • Research Paper
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

Metastatic disease accounts for most deaths due to breast cancer and thus identification of novel ways to prevent this complication remains a key goal. A frequently employed preclinical model of breast cancer metastasis relies on xenografted human MDA-MB-231 cells, since these reliably produce both soft tissue and osseous metastases when introduced into the arterial circulation of athymic mice. Herein, we explored the ability of suramin (SA), an agent shown to antagonize the effects of various stromal cell-derived growth factors relevant to bone marrow colonization of tumor cells, administered both with and without paclitaxel (PTX), to inhibit the development of MDA-MB-231 metastases. Treatment with SA, PTX, or PTX plus SA (PTX/SA) was begun either at day-1, or 7 days after intra-arterial inoculation of luciferase-expressing MDA-MB-231-luc2 cells. Using in vivo and ex vivo bioluminescence imaging to detect macro-metastases, we found that PTX/SA treatment initiated on day-1 was able to dramatically reduce the frequency of bone metastases. PTX/SA and PTX administration commenced at day 7, in contrast, had no significant effect on the frequency of bone metastases, but exerted a relatively modest inhibitory effect on growth of metastases. Interestingly, reminiscent of what is seen clinically in anti-HER2 treated individuals, several of the PTX/SA-treated long term survivors went on to develop late onset CNS metastasis. Our results suggest that combining SA with PTX either in an adjuvant setting or during medical interventions that can increase the numbers of circulating tumour cells might be an effective way to prevent the development of metastases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

BLI:

Bioluminescence imaging

CNS:

Central nervous system

FBS:

Fetal bovine serum

H&E:

Hematoxylin and eosin staining

MST:

Median survival time

MTT:

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

NIH-III:

NIH-III (nu/nu;beige/beige) mice

PBS:

Phosphate-buffered saline

PTX:

Paclitaxel

ROI:

Region of interest

SA:

Suramin

References

  1. Nguyen DX, Bos PD, Massagué J (2009) Metastasis: from dissemination to organ-specific colonization. Nat Rev Cancer 9(4):274–284

    Article  CAS  PubMed  Google Scholar 

  2. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D (2011) Global cancer statistics. CA Cancer J Clin 61:69–90

    Article  PubMed  Google Scholar 

  3. Rabbani SA, Mazar AP (2007) Evaluating distant metastases in breast cancer: from biology to outcomes. Cancer Metastasis Rev 26:663–674

    Article  PubMed  Google Scholar 

  4. Akhtari M, Mansuri J, Newman KA, Guise TM, Seth P (2008) Biology of breast cancer bone metastasis. Cancer Biol Ther 7:3–9

    Article  CAS  PubMed  Google Scholar 

  5. Bussard KM, Gay CV, Mastro AM (2008) The bone microenvironment in metastasis; what is special about bone? Cancer Metastasis Rev 27:41–55

    Article  PubMed  Google Scholar 

  6. Bos PD, Zhang XH, Nadal C, Shu W, Gomis RR, Nguyen DX, Minn AJ, van de Vijver MJ, Gerald WL, Foekens JA, Massagué J (2009) Genes that mediate breast cancer metastasis to the brain. Nature 459:1005–1009

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Lu J, Steeg PS, Price JE, Krishnamurthy S, Mani SA, Reuben J, Cristofanilli M, Dontu G, Bidaut L, Valero V, Hortobagyi GN, Yu D (2009) Breast cancer metastasis: challenges and opportunities. Cancer Res 69:4951–4953

    Article  CAS  PubMed  Google Scholar 

  8. Damia G, D’Incalci M (2009) Contemporary pre-clinical development of anticancer agents-what are the optimal preclinical models? Eur J Cancer 45:2768–2781

    Article  CAS  PubMed  Google Scholar 

  9. Abu-Khalaf MM, Harris LN (2011) Anti-microtubule agents. In: DeVita VT, Rosenberg SA, Lawrence TS (eds) Cancer: principles and practice of Oncology, 9th edn. Lippincott Williams and Wilkins, Philadelphia, pp 413–420

    Google Scholar 

  10. Burstein HJ, Harris JR, Morrow M (2011) Malignant tumors of the breast. In: DeVita VT, Lawrence TS, Rosenberg SA (eds) In cancer: principles and practice of Oncology, 9th edn. Lippincott Williams and Wilkins, Philadelphia, pp 1401–1439

    Google Scholar 

  11. McGeary RP, Bennett AJ, Tran QB, Cosgrove KL, Ross BP (2008) Suramin: clinical uses and structure-activity relationships. Mini Rev Med Chem. 8:1384–1394

    Article  CAS  PubMed  Google Scholar 

  12. Garrett JS, Coughlin SR, Niman HL, Tremble PM, Giels GM, Williams LT (1984) Blockade of autocrine stimulation in simian sarcoma virus-transformed cells reverses down-regulation of platelet-derived growth factor receptors. Proc Natl Acad Sci U S A 81:7466–7470

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Pollak M, Richard M (1990) Suramin blockade of insulin like growth factor I-stimulated proliferation of human osteosarcoma cells. J Natl Cancer Inst 82:1349–1352

    Article  CAS  PubMed  Google Scholar 

  14. Kathir KM, Kumar TK, Yu C (2006) Understanding the mechanism of the anti-mitogenic activity of suramin. Biochemistry 45:899–906

    Article  CAS  PubMed  Google Scholar 

  15. Hosang M (1985) Suramin binds to platelet-derived growth factor and inhibits its biological activity. J Cell Biochem 29:265–273

    Article  CAS  PubMed  Google Scholar 

  16. Song S, Wientjes MG, Walsh C, Au JL (2001) Nontoxic doses of suramin enhance activity of paclitaxel against lung metastases. Cancer Res 61:6145–6150

    CAS  PubMed  Google Scholar 

  17. Lu Z, Wientjes TS, Au JL (2005) Nontoxic suramin treatments enhance docetaxel activity in chemotherapy-pretreated non-small cell lung xenograft tumors. Pharm Res 22:1069–1078

    Article  CAS  PubMed  Google Scholar 

  18. Song S, Wientjes MG, Gan Y, Au JL (2000) Fibroblast growth factors: an epigenetic mechanism of broad spectrum resistance to anticancer drugs. Proc Natl Acad Sci U S A 97:8658–8663

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Pesenti E, Sola F, Mongelli N, Grandi M, Spreafico F (1992) Suramin prevents neovascularisation and tumour growth through blocking of basic fibroblast growth factor activity. Br J Cancer 66:367–372

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Meads MB, Gatenby RA, Dalton WS (2009) Environment-mediated drug resistance: a major contributor to minimal residual disease. Nat Rev Cancer 9:665–674

    Article  CAS  PubMed  Google Scholar 

  21. Chou TC, Talalay P (1984) Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv Enzyme Regul 22:27–55

    Article  CAS  PubMed  Google Scholar 

  22. Bondareva A, Downey CM, Ayres F, Liu W, Boyd SK, Hallgrimsson B, Jirik FR (2009) The lysyl oxidase inhibitor, beta-aminopropionitrile, diminishes the metastatic colonization potential of circulating breast cancer cells. PLoS ONE 4:e5620

    Article  PubMed Central  PubMed  Google Scholar 

  23. Song S, Yu B, Wei Y, Wientjes MG, Au JL (2004) Low-dose suramin enhanced paclitaxel activity in chemotherapy-naive and paclitaxel-pretreated human breast xenograft tumors. Clin Cancer Res 10:6058–6065

    Article  CAS  PubMed  Google Scholar 

  24. Tran TA, Gillet L, Roger S, Besson P, White E, Le Guennec JY (2009) Non-anti-mitotic concentrations of taxol reduce breast cancer cell invasiveness. Biochem Biophys Res Commun 379:304–308

    Article  CAS  PubMed  Google Scholar 

  25. Valastyan S, Weinberg RA (2011) Tumor metastasis: molecular insights and evolving paradigms. Cell 147:275–292

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Castells M, Thibault B, Delord JP, Couderc B (2012) Implication of tumor microenvironment in chemoresistance: tumor-associated stromal cells protect tumor cells from cell death. Int J Mol Sci 13:9545–9571

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Meads MB, Hazlehurst LA, Dalton WS (2008) The bone marrow microenvironment as a tumor sanctuary and contributor to drug resistance. Clin Cancer Res 14:2519–2526

    Article  CAS  PubMed  Google Scholar 

  28. Lustberg MB, Pant S, Ruppert AS, Shen T, Wei Y, Chen L, Brenner L, Shiels D, Jensen RR, Berger M, Mrozek E, Ramaswamy B, Grever M, Au JL, Wientjes MG, Shapiro CL (2012) Phase I/II trial of non-cytotoxic suramin in combination with weekly paclitaxel in metastatic breast cancer treated with prior taxanes. Cancer Chemother Pharmacol 70(1):49–56

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Fellner S, Bauer B, Miller DS, Schaffrik M, Fankhänel M, Spruss T, Bernhardt G, Graeff C, Färber L, Gschaidmeier H, Buschauer A, Fricker G (2002) Transport of paclitaxel (Taxol) across the blood-brain barrier in vitro and in vivo. J Clin Invest 110:1309–1318

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Kemper EM, van Zandbergen AE, Cleypool C, Mos HA, Boogerd W, Beijnen JH, van Tellingen O (2003) Increased penetration of paclitaxel into the brain by inhibition of P-Glycoprotein. Clin Cancer Res 9:2849–2855

    CAS  PubMed  Google Scholar 

  31. Burstein HJ, Lieberman G, Slamon DJ, Winer EP, Klein P (2005) Isolated central nervous system metastases in patients with HER2-overexpressing advanced breast cancer treated with first-line trastuzumab-based therapy. Ann Oncol 16:1772–1777

    Article  CAS  PubMed  Google Scholar 

  32. Tinhofer I, Hristozova T, Stromberger C, Keilhoiz U, Budach V (2012) Monitoring of circulating tumor cells and their expression of EGFR/phospho-EGFR during combined radiotherapy regimens in locally advanced squamous cell carcinoma of the head and neck. Int J Radiat Oncol Biol Phys 83:e685–e690

    Article  CAS  PubMed  Google Scholar 

  33. Choy A, McCulloch P (1996) Induction of tumour cell shedding into effluent venous blood breast cancer surgery. Br J Cancer 73:79–82

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Galán M, Viñolas N, Colomer D, Soler G, Muñoz M, Longarón R, Ventura PJ, Gascón P, Estapé J (2002) Detection of occult breast cancer cells by amplification of CK19 mRNA by reverse transcriptase-polymerase chain reaction: role of surgical manipulation. Anticancer Res 22:2877–2884

    PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by a Breast Cancer Translational Group Grant from the Alberta Cancer Foundation. F.R.J. was the recipient of a Canada Research Chairs award.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Arvind K. Singla or Frank R. Jirik.

Additional information

Arvind K.Singla and Alla Bondareva have contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singla, A.K., Bondareva, A. & Jirik, F.R. Combined treatment with paclitaxel and suramin prevents the development of metastasis by inhibiting metastatic colonization of circulating tumor cells. Clin Exp Metastasis 31, 705–714 (2014). https://doi.org/10.1007/s10585-014-9661-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-014-9661-6

Keywords

Navigation