Skip to main content

Advertisement

Log in

Development of a realistic in vivo bone metastasis model of human renal cell carcinoma

  • Research Paper
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

About one-third of patients with advanced renal cell carcinoma (RCC) have bone metastases. The incidence of RCC is increasing and bone metastatic RCC merits greater focus. Realistic preclinical bone metastasis models of RCC are lacking, hampering the development of effective therapies. We developed a realistic in vivo bone metastasis model of human RCC by implanting precision-cut tissue slices under the renal capsule of immunodeficient mice. The presence of disseminated cells in bone marrow of tissue slice graft (TSG)-bearing mice was screened by human-specific polymerase chain reaction and confirmed by immunohistology using human-specific antibody. Disseminated tumor cells in bone marrow of TSG-bearing mice derived from three of seven RCC patients were detected as early as 1 month after tissue implantation at a high frequency with close resemblance to parent tumors (e.g., CAIX expression and high vascularity). The metastatic patterns of TSGs correlated with disease progression in patients. In addition, TSGs retained capacity to metastasize to bone at high frequency after serial passaging and cryopreservation. Moreover, bone metastases in mice responded to Temsirolimus treatment. Intratibial injections of single cells generated from TSGs showed 100 % engraftment and produced X-ray-visible tumors as early as 3 weeks after cancer cell inoculation. Micro-computed tomography (μCT) and histological analysis revealed osteolytic characteristics of these lesions. Our results demonstrated that orthotopic RCC TSGs have potential to develop bone metastases that respond to standard therapy. This first reported primary RCC bone metastasis model provides a realistic setting to test therapeutics to prevent or treat bone metastases in RCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CAIX:

Carbonic anhydrase IX

CT:

Computed tomography

FBS:

Fetal bovine serum

HBS:

HEPES-buffered saline

qRT-PCR:

Quantitative real-time PCR

RCC:

Renal cell carcinoma

TRAP:

Tartrate-resistant acid phosphatase

TSG:

Tissue slice graft

References

  1. Bianchi M, Sun M, Jeldres C, Shariat SF, Trinh QD, Briganti A, Tian Z, Schmitges J, Graefen M, Perrotte P, Menon M, Montorsi F, Karakiewicz PI (2012) Distribution of metastatic sites in renal cell carcinoma: a population-based analysis. Ann Oncol 23(4):973–980

    Article  CAS  PubMed  Google Scholar 

  2. Woodward E, Jagdev S, McParland L, Clark K, Gregory W, Newsham A, Rogerson S, Hayward K, Selby P, Brown J (2011) Skeletal complications and survival in renal cancer patients with bone metastases. Bone 48(1):160–166

    Article  PubMed  Google Scholar 

  3. McKay RR, Kroeger N, Xie W, Lee JL, Knox JJ, Bjarnason GA, Mackenzie MJ, Wood L, Srinivas S, Vaishampayan UN, Rha SY, Pal SK, Donskov F, Tantravahi SK, Rini BI, Heng DY, Choueiri TK (2013) Impact of bone and liver metastases on patients with renal cell carcinoma treated with targeted therapy. Eur Urol 65(3):577–584

    Article  PubMed  Google Scholar 

  4. Molina AM, Jia X, Feldman DR, Hsieh JJ, Ginsberg MS, Velasco S, Patil S, Motzer RJ (2013) Long-term response to sunitinib therapy for metastatic renal cell carcinoma. Clin Genitourin Cancer 11(3):297–302

    Article  PubMed  Google Scholar 

  5. Shinohara N, Nonomura K, Abe T, Maruyama S, Kamai T, Takahashi M, Tatsugami K, Yokoi S, Deguchi T, Kanayama H, Oba K, Naito S (2012) A new prognostic classification for overall survival in Asian patients with previously untreated metastatic renal cell carcinoma. Cancer Sci 103(9):1695–1700

    Article  CAS  PubMed  Google Scholar 

  6. Naito S, Yamamoto N, Takayama T, Muramoto M, Shinohara N, Nishiyama K, Takahashi A, Maruyama R, Saika T, Hoshi S, Nagao K, Yamamoto S, Sugimura I, Uemura H, Koga S, Takahashi M, Ito F, Ozono S, Terachi T, Tomita Y (2010) Prognosis of Japanese metastatic renal cell carcinoma patients in the cytokine era: a cooperative group report of 1463 patients. Eur Urol 57(2):317–325

    Article  CAS  PubMed  Google Scholar 

  7. Keizman D, Ish-Shalom M, Pili R, Hammers H, Eisenberger MA, Sinibaldi V, Boursi B, Maimon N, Gottfried M, Hayat H, Peer A, Kovel S, Sella A, Berger R, Carducci MA (2012) Bisphosphonates combined with sunitinib may improve the response rate, progression free survival and overall survival of patients with bone metastases from renal cell carcinoma. Eur J Cancer 48(7):1031–1037

    Article  CAS  PubMed  Google Scholar 

  8. Lipton A, Colombo-Berra A, Bukowski RM, Rosen L, Zheng M, Urbanowitz G (2004) Skeletal complications in patients with bone metastases from renal cell carcinoma and therapeutic benefits of zoledronic acid. Clin Cancer Res 10(18 Pt 2):6397S–6403S

    Article  CAS  PubMed  Google Scholar 

  9. Henry DH, Costa L, Goldwasser F, Hirsh V, Hungria V, Prausova J, Scagliotti GV, Sleeboom H, Spencer A, Vadhan-Raj S, von Moos R, Willenbacher W, Woll PJ, Wang J, Jiang Q, Jun S, Dansey R, Yeh H (2011) Randomized, double-blind study of denosumab versus zoledronic acid in the treatment of bone metastases in patients with advanced cancer (excluding breast and prostate cancer) or multiple myeloma. J Clin Oncol 29(9):1125–1132

    Article  CAS  PubMed  Google Scholar 

  10. Beuselinck B, Wolter P, Karadimou A, Elaidi R, Dumez H, Rogiers A, Van Cann T, Willems L, Body JJ, Berkers J, Van Poppel H, Lerut E, Debruyne P, Paridaens R, Schoffski P (2012) Concomitant oral tyrosine kinase inhibitors and bisphosphonates in advanced renal cell carcinoma with bone metastases. Br J Cancer 107(10):1665–1671

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Howlader N, Noone AM, Krapcho M, Garshell J, Neyman N, Altekruse SF, Kosary CL, Yu M, Ruhl J, Tatalovich Z, Cho H, Mariotto A, Lewis, Chen HS, Feuer EJ, KA C (2012) SEER Cancer Statistics Review, 1975–2010. National Cancer Institute, Bethesda

    Google Scholar 

  12. Strube A, Stepina E, Mumberg D, Scholz A, Hauff P, Kakonen SM (2010) Characterization of a new renal cell carcinoma bone metastasis mouse model. Clin Exp Metastasis 27(5):319–330

    Article  CAS  PubMed  Google Scholar 

  13. Josson S, Nomura T, Lin JT, Huang WC, Wu D, Zhau HE, Zayzafoon M, Weizmann MN, Gururajan M, Chung LW (2011) β2-microglobulin induces epithelial to mesenchymal transition and confers cancer lethality and bone metastasis in human cancer cells. Cancer Res 71(7):2600–2610

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Kobayashi M, Morita T, Chun NA, Matsui A, Takahashi M, Murakami T (2012) Effect of host immunity on metastatic potential in renal cell carcinoma: the assessment of optimal in vivo models to study metastatic behavior of renal cancer cells. Tumour Biol 33(2):551–559

    Article  CAS  PubMed  Google Scholar 

  15. Weber K, Doucet M, Kominsky S (2007) Renal cell carcinoma bone metastasis—elucidating the molecular targets. Cancer Metastasis Rev 26(3–4):691–704

    Article  PubMed  Google Scholar 

  16. Weber KL, Pathak S, Multani AS, Price JE (2002) Characterization of a renal cell carcinoma cell line derived from a human bone metastasis and establishment of an experimental nude mouse model. J Urol 168(2):774–779

    Article  PubMed  Google Scholar 

  17. Wang J, Chen A, Yang C, Zeng H, Qi J, Guo FJ (2012) A bone-seeking clone exhibits different biological properties from the ACHN parental human renal cell carcinoma in vivo and in vitro. Oncol Rep 27(4):1104–1110

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Maita S, Yuasa T, Tsuchiya N, Mitobe Y, Narita S, Horikawa Y, Hatake K, Fukui I, Kimura S, Maekawa T, Habuchi T (2012) Antitumor effect of sunitinib against skeletal metastatic renal cell carcinoma through inhibition of osteoclast function. Int J Cancer 130(3):677–684

    Article  CAS  PubMed  Google Scholar 

  19. Peterson JK, Houghton PJ (2004) Integrating pharmacology and in vivo cancer models in preclinical and clinical drug development. Eur J Cancer 40(6):837–844

    Article  CAS  PubMed  Google Scholar 

  20. Sausville EA, Burger AM (2006) Contributions of human tumor xenografts to anticancer drug development. Cancer Res 66(7):3351–3354

    Article  CAS  PubMed  Google Scholar 

  21. Ocana A, Pandiella A, Siu LL, Tannock IF (2011) Preclinical development of molecular-targeted agents for cancer. Nat Rev Clin Oncol 8(4):200–209

    Article  CAS  Google Scholar 

  22. Dennis C (2012) Mouse ‘avatars’ could aid pancreatic cancer therapy. Nat News. doi:10.1038/nature.2012.10259

    Google Scholar 

  23. DeRose YS, Wang G, Lin YC, Bernard PS, Buys SS, Ebbert MT, Factor R, Matsen C, Milash BA, Nelson E, Neumayer L, Randall RL, Stijleman IJ, Welm BE, Welm AL (2011) Tumor grafts derived from women with breast cancer authentically reflect tumor pathology, growth, metastasis and disease outcomes. Nat Med 17(11):1514–1520

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Garber K (2007) Personal mouse colonies give hope for pancreatic cancer patients. J Natl Cancer Inst 99(2):105–107

    Article  PubMed  Google Scholar 

  25. Garber K (2009) From human to mouse and back: ‘tumorgraft’ models surge in popularity. J Natl Cancer Inst 101(1):6–8

    Article  PubMed  Google Scholar 

  26. Hidalgo M, Bruckheimer E, Rajeshkumar NV, Garrido-Laguna I, De Oliveira E, Rubio-Viqueira B, Strawn S, Wick MJ, Martell J, Sidransky D (2011) A pilot clinical study of treatment guided by personalized tumorgrafts in patients with advanced cancer. Mol Cancer Ther 10(8):1311–1316

    Article  CAS  PubMed  Google Scholar 

  27. Thong AE, Zhao H, Ingels A, Valta MP, Nolley R, Santos J, Young SR, Peehl DM (2013) Tissue slice grafts of human renal cell carcinoma: An authentic preclinical model with high engraftment rate and metastatic potential. Urol Oncol 32(1):43.e23–43.e30

    Article  Google Scholar 

  28. Huang D, Ding Y, Li Y, Luo WM, Zhang ZF, Snider J, Vandenbeldt K, Qian CN, Teh BT (2010) Sunitinib acts primarily on tumor endothelium rather than tumor cells to inhibit the growth of renal cell carcinoma. Cancer Res 70(3):1053–1062

    Article  CAS  PubMed  Google Scholar 

  29. Zhao H, Nolley R, Chen Z, Peehl DM (2010) Tissue slice grafts: an in vivo model of human prostate androgen signaling. Am J Pathol 177(1):229–239

    Article  PubMed Central  PubMed  Google Scholar 

  30. Fisher RL, Vickers AE (2013) Preparation and culture of precision-cut organ slices from human and animal. Xenobiotica; the fate of foreign compounds in biological systems 43(1):8–14

    Article  CAS  PubMed  Google Scholar 

  31. Ingels A, Zhao H, Thong A, Saar M, Valta M, Nolley R, Santos J, Peehl DM (2013) Pre-clinical trial of a new dual mTOR inhibitor INK128 for renal cell carcinoma. Int J Cancer 134(10):2322–2329

    Article  PubMed  Google Scholar 

  32. Hughes DE, Wright KR, Uy HL, Sasaki A, Yoneda T, Roodman GD, Mundy GR, Boyce BF (1995) Bisphosphonates promote apoptosis in murine osteoclasts in vitro and in vivo. J Bone Miner Res 10(10):1478–1487

    Article  CAS  PubMed  Google Scholar 

  33. Valta MP, Tuomela J, Bjartell A, Valve E, Vaananen HK, Harkonen P (2008) FGF-8 is involved in bone metastasis of prostate cancer. Int J Cancer 123(1):22–31

    Article  CAS  PubMed  Google Scholar 

  34. Zhao H, Nolley R, Chen Z, Reese SW, Peehl DM (2008) Inhibition of monoamine oxidase A promotes secretory differentiation in basal prostatic epithelial cells. Differentiation 76(7):820–830

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Wang J, Chou CH, Blankson J, Satoh M, Knuth MW, Eisenberg RA, Pisetsky DS, Reeves WH (1993) Murine monoclonal antibodies specific for conserved and non-conserved antigenic determinants of the human and murine Ku autoantigens. Mol Biol Rep 18(1):15–28

    Article  PubMed  Google Scholar 

  36. Saylor PJ, Armstrong AJ, Fizazi K, Freedland S, Saad F, Smith MR, Tombal B, Pienta K (2013) New and emerging therapies for bone metastases in genitourinary cancers. Eur Urol 63(2):309–320

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Grisanzio C, Seeley A, Chang M, Collins M, Di Napoli A, Cheng SC, Percy A, Beroukhim R, Signoretti S (2011) Orthotopic xenografts of RCC retain histological, immunophenotypic and genetic features of tumours in patients. J Pathol 225(2):212–221

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. van Rijn RS, Simonetti ER, Hagenbeek A, Hogenes MC, de Weger RA, Canninga-van Dijk MR, Weijer K, Spits H, Storm G, van Bloois L, Rijkers G, Martens AC, Ebeling SB (2003) A new xenograft model for graft-versus-host disease by intravenous transfer of human peripheral blood mononuclear cells in RAG2−/− gammac−/− double-mutant mice. Blood 102(7):2522–2531

    Article  PubMed  Google Scholar 

  39. Rozemuller H, Knaan-Shanzer S, Hagenbeek A, van Bloois L, Storm G, Martens AC (2004) Enhanced engraftment of human cells in RAG2/gammac double-knockout mice after treatment with CL2MDP liposomes. Exp Hematol 32(11):1118–1125

    Article  CAS  PubMed  Google Scholar 

  40. An Z, Jiang P, Wang X, Moossa AR, Hoffman RM (1999) Development of a high metastatic orthotopic model of human renal cell carcinoma in nude mice: benefits of fragment implantation compared to cell-suspension injection. Clin Exp Metastasis 17(3):265–270

    Article  CAS  PubMed  Google Scholar 

  41. Zhang XH, Jin X, Malladi S, Zou Y, Wen YH, Brogi E, Smid M, Foekens JA, Massague J (2013) Selection of bone metastasis seeds by mesenchymal signals in the primary tumor stroma. Cell 154(5):1060–1073

    Article  CAS  PubMed  Google Scholar 

  42. Hoffmann NE, Gillett MD, Cheville JC, Lohse CM, Leibovich BC, Blute ML (2008) Differences in organ system of distant metastasis by renal cell carcinoma subtype. J Urol 179(2):474–477

    Article  PubMed  Google Scholar 

  43. Sahi C, Knox JJ, Clemons M, Joshua AM, Broom R (2010) Renal cell carcinoma bone metastases: clinical advances. Ther Adv Med Oncol 2(2):75–83

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Vrdoljak E, Rini B, Schmidinger M, Omrcen T, Torday L, Szczylik C, Sella A (2013) Bisphosphonates and vascular endothelial growth factor-targeted drugs in the treatment of patients with renal cell carcinoma metastatic to bone. Anticancer Drugs 24(5):431–440

    Article  CAS  PubMed  Google Scholar 

  45. Wood SL, Brown JE (2012) Skeletal metastasis in renal cell carcinoma: current and future management options. Cancer Treat Rev 38(4):284–291

    Article  PubMed  Google Scholar 

  46. Vaishampayan U (2013) Cabozantinib as a novel therapy for renal cell carcinoma. Curr Oncol Rep 15(2):76–82

    Article  CAS  PubMed  Google Scholar 

  47. Pal SK, Quinn DI (2013) Differentiating mTOR inhibitors in renal cell carcinoma. Cancer Treat Rev 39(7):709–719

    Article  CAS  PubMed  Google Scholar 

  48. Okui T, Shimo T, Fukazawa T, Kurio N, Hassan NM, Honami T, Takaoka M, Naomoto Y, Sasaki A (2010) Antitumor effect of temsirolimus against oral squamous cell carcinoma associated with bone destruction. Mol Cancer Ther 9(11):2960–2969

    Article  CAS  PubMed  Google Scholar 

  49. Hussein O, Tiedemann K, Murshed M, Komarova SV (2012) Rapamycin inhibits osteolysis and improves survival in a model of experimental bone metastases. Cancer Lett 314(2):176–184

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by funds from the Department of Urology, Instrumentarium Science Foundation (MPV), Finnish Medical Foundation (MPV), Finnish Cultural Foundation (MPV) and South-Western Cancer Foundation of Finland (MPV), Association Française d’Urologie (AI), and the Ferdinand Eisenberger Grant of the German Society of Urology ID SaM1/FE-11 (MS). The funding institutions did not have any role in the design, collection, analysis, and interpretation of data, in the writing of the manuscript; or in the decision to submit the manuscript for publication. The personnel at Pharmatest Services Ltd. (Turku, Finland) are thanked for TRAP staining.

Conflict of interests

The authors declare that they have no conflict of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donna M. Peehl.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Valta, M.P., Zhao, H., Ingels, A. et al. Development of a realistic in vivo bone metastasis model of human renal cell carcinoma. Clin Exp Metastasis 31, 573–584 (2014). https://doi.org/10.1007/s10585-014-9651-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-014-9651-8

Keywords

Navigation