Skip to main content

Advertisement

Log in

Host pigment epithelium-derived factor (PEDF) prevents progression of liver metastasis in a mouse model of uveal melanoma

  • Research Paper
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

Uveal melanoma (UM) has a 30 % 5-year mortality rate, primarily due to liver metastasis. Both angiogenesis and stromagenesis are important mechanisms for the progression of liver metastasis. Pigment epithelium-derived factor (PEDF), an anti-angiogenic and anti-stromagenic protein, is produced by hepatocytes. Exogenous PEDF suppresses metastasis progression; however, the effects of host-produced PEDF on metastasis progression are unknown. We hypothesize that host PEDF inhibits liver metastasis progression through a mechanism involving angiogenesis and stromagenesis. Mouse melanoma cells were injected into the posterior ocular compartment of PEDF-null mice and control mice. After 1 month, the number, size, and mean vascular density (MVD) of liver metastases were determined. The stromal component of hepatic stellate cells (HSCs) and the type III collagen they produce was evaluated by immunohistochemistry. Host PEDF inhibited the total area of liver metastasis and the frequency of macrometastases (diameter >200 μm) but did not affect the total number of metastases. Mice expressing PEDF exhibited significantly lower MVD and less type III collagen production in metastases. An increase in activated HSCs was seen in the absence of PEDF, but this result was not statistically significant. In conclusion, host PEDF inhibits the progression of hepatic metastases in a mouse model of UM, and loss of PEDF is accompanied by an increase in tumor blood vessel density and type III collagen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

H&E:

Hematoxylin & eosin stain

HSC:

Hepatic stellate cell

MMP:

Matrix metalloproteinase

MVD:

Mean vascular density

PEDF:

Pigment epithelium-derived factor

SMA:

Smooth muscle actin

UM:

Uveal melanoma

VEGF:

Vascular endothelial growth factor

References

  1. Singh A et al (2011) Uveal melanoma: trends in incidence, treatment, and survival. Ophthalmology 118:1881–1885

    Article  PubMed  Google Scholar 

  2. Damato B et al (2011) Uveal melanoma: Where are we going? US Ophthalmic Review 4(1):105–107

    Google Scholar 

  3. Hurst E et al (2003) Ocular melanoma: a review and the relationship to cutaneous melanoma. Arch Dermatol 139:1067–1073

    Article  PubMed  Google Scholar 

  4. Swerdlow A et al (1995) Risks of second primary malignancy in patients with cutaneous and ocular melanoma in Denmark, 1943–1989. Int J Cancer 61:773–779

    Article  PubMed  CAS  Google Scholar 

  5. Vajdic C et al (2002) Sun exposure predicts risk of ocular melanoma in Australia. Int J Cancer 101:175–182

    Article  PubMed  CAS  Google Scholar 

  6. Singh A et al (2005) Uveal melanoma: genetic aspects. Ophthalmol Clini N. Am. 18:85–97

    Article  Google Scholar 

  7. Sato T et al (2008) The biology and management of uveal melanoma. Curr Oncol Rep 10:431–438

    Article  PubMed  CAS  Google Scholar 

  8. Blanco PL et al (2012) Uveal melanoma dormancy: an acceptable clinical endpoint? Melanoma Res 22(5):334–340

    Article  PubMed  Google Scholar 

  9. Grossniklaus H et al (2013) progression of ocular melanoma metastasis to the liver: the 2012 Zimmerman lecture. JAMA Ophthalmol 131(4):462–469

    Article  PubMed  CAS  Google Scholar 

  10. Lake S et al (2012) Comparison of formalin-fixed and snap frozen samples analyzed by multiplex ligation-dependent probe amplification for prognostic testing in uveal melanoma. Anat Pathol 53(6):2647–2652

    Google Scholar 

  11. Onken M et al (2004) Gene expression profiling in uveal melanoma reveals two molecular classes and predicts metastatic death. Cancer Res 64(20):7205–7209

    Article  PubMed  CAS  Google Scholar 

  12. Vaarwater J et al (2012) Multiplex ligation-dependent probe amplification equals fluorescence in situ hybridization for the identification of patients at risk for metastatic disease in uveal melanoma. Melanoma Res 22(1):30–37

    Article  PubMed  CAS  Google Scholar 

  13. Vidal-Vanaclocha F et al (2008) The prometastatic microenvironment of the liver. Cancer Microenviron 1(1):113–129

    Article  PubMed  Google Scholar 

  14. Bakalian S et al (2008) Molecular pathways mediating liver metastasis in patients with uveal melanoma. Clin Cancer Res 14(4):951–956

    Article  PubMed  CAS  Google Scholar 

  15. Luzzi K et al (1998) Multistep nature of metastatic inefficiency: dormancy of solitary cells after successful extravasation and limited survival of early micrometastases. Am J Pathol 153(3):865–873

    Article  PubMed  CAS  Google Scholar 

  16. Damato B et al (2007) Cytogenetics of uveal melanoma: a 7-year clinical experience. Ophthalmology 114:1925–1931

    Article  PubMed  Google Scholar 

  17. Materin M et al (2011) Molecular alterations in uveal melanoma. Curr Probl Cancer 35(4):211–224

    Article  PubMed  Google Scholar 

  18. Harbour J et al (2010) Frequent mutation of bap1 in metastasizing uveal melanomas. Science 330:1410–1413

    Article  PubMed  CAS  Google Scholar 

  19. Marshall J et al (2007) Transcriptional profiling of human uveal melanoma from cell lines to intraocular tumors to metastasis. Clin Exp Met 24:353–362

    Article  CAS  Google Scholar 

  20. Jager M et al (2002) HLA expression in uveal melanoma: there is no rule without some exception. Hum Immunol 63:444–451

    Article  PubMed  CAS  Google Scholar 

  21. Bingle L et al (2002) The role of tumour-associated macrophages in tumour progression: implications for new anticancer therapies. J Pathol 196:254–265

    Article  PubMed  CAS  Google Scholar 

  22. Beacham D et al (2005) Stromagenesis: the changing face of fibroblastic microenvironments during tumor progression. Semin Cancer Biol 15(5):329–341

    Article  PubMed  Google Scholar 

  23. Zong L (2012) 18a-glycyrrhetinic acid down-regulates expression of type i and iii collagen via tgf-b1/smad signaling pathway in human and rat hepatic stellate cells. Int J Med Sci 9(5):370–379

    Article  PubMed  CAS  Google Scholar 

  24. Dawson D et al (1999) Pigment epithelium-derived factor: a potent inhibitor of angiogenesis. Science 285:245–248

    Article  PubMed  CAS  Google Scholar 

  25. Fernández-Barral A et al (2012) Hypoxia negatively regulates antimetastatic pedf in melanoma cells by a hypoxia inducible factor-independent, autophagy dependent mechanism. PloS one 7(3):e32989

    Article  PubMed  Google Scholar 

  26. Ho T et al (2010) Pigment epithelium-derived factor is an intrinsic antifibrosis factor targeting hepatic stellate cells. Am J Pathol 177(4):1798–1811. doi:10.2353/ajpath.2010.091085

    Article  PubMed  CAS  Google Scholar 

  27. Orgaz J et al (2009) Loss of pigment epithelium-derived factor enables migration, invasion and metastatic spread of human melanoma. Oncogene 28(47):4147–4161

    Article  PubMed  CAS  Google Scholar 

  28. Bernard A et al (2009) Laminin receptor involvement in the anti-angiogenic activity of pigment epithelium-derived factor. J Biol Chem 284(16):10480–10490

    Article  PubMed  CAS  Google Scholar 

  29. Notari L et al (2010) Pigment epithelium-derived factor binds to cell-surface F1-ATP synthase. FEBS J 277:2192–2205

    Article  PubMed  CAS  Google Scholar 

  30. Notari L et al (2006) Identification of a lipase-linked cell membrane receptor for pigment epithelium-derived factor. J Biol Chem 281(49):38022–38037

    Article  PubMed  CAS  Google Scholar 

  31. Chen L et al (2006) PEDF induces apoptosis in human endothelial cells by activating p38 MAP kinase dependent cleavage of multiple caspases. Biochem Biophys Res Commun 348(4):1288–1295

    Article  PubMed  CAS  Google Scholar 

  32. Volpert O et al (2002) Inducer-stimulated Fas targets activated endothelium for destruction by anti-angiogenic thrombospondin-1 and pigment epithelium-derived factor. Nat Med 8(4):349–357

    Article  PubMed  CAS  Google Scholar 

  33. Cai J et al (2006) Pigment epithelium-derived factor inhibits angiogenesis via regulated intracellular proteolysis of vascular endothelial growth factor receptor 1. J Biol Chem 281(6):3604–3613

    Article  PubMed  CAS  Google Scholar 

  34. Zhang S et al (2006) Pigment epithelium-derived factor downregulates vascular endothelial growth factor (VEGF) expression and inhibits VEGF–VEGF receptor 2 binding in diabetic retinopathy. J Mol Endocrinol 37(1):1–12

    Article  PubMed  Google Scholar 

  35. Grippo P, Fitchev P, Bentrem D, Melstrom L (2012) Concurrent PEDF deficiency and Kras mutation induce invasive pancreatic cancer and adipose-rich stroma in mice. Gut 61(10):1454–1464

    Article  PubMed  CAS  Google Scholar 

  36. Allavena P et al (2008) The Yin-Yang of tumor-associated macrophages in neoplastic progression and immune surveillance. Immunol Rev 222:155–161

    Article  PubMed  CAS  Google Scholar 

  37. Notari L et al (2005) Pigment epithelium-derived factor is a substrate for matrix metalloproteinase type 2 and type 9: implications for downregulation in hypoxia. Invest Ophthalmol Vis Sci 46(8):2736–2747

    Article  PubMed  Google Scholar 

  38. Hanahan D et al (1996) Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86(3):353–364

    Article  PubMed  CAS  Google Scholar 

  39. Yang H et al (2006) Angiostatin decreases cell migration and vascular endothelium growth factor (VEGF) to pigment epithelium derived factor (PEDF) RNA ratio in vitro and in a murine ocular melanoma model. Mol Vis 12:511–517

    PubMed  CAS  Google Scholar 

  40. Yang H et al (2010) Constitutive overexpression of pigment epithelium-derived factor inhibition of ocular melanoma growth and metastasis. Invest Ophthalmol Vis Sci 51(1):28–34

    Article  PubMed  Google Scholar 

  41. Garcia M et al (2004) Inhibition of xenografted human melanoma growth and prevention of metastasis development by dual antiangiogenic/antitumor activities of pigment epithelium-derived factor. Cancer Res 64:5632–5642

    Article  PubMed  CAS  Google Scholar 

  42. Diaz C et al (1999) B16LS9 melanoma cells spread to the liver from the murine ocular posterior compartment (PC). Curr Eye Res 18(2):125–129

    Article  PubMed  CAS  Google Scholar 

  43. Dithmar S et al (2000) A new technique for implantation of tissue culture melanoma cells in a murine model of metastatic ocular melanoma. Melanoma Res 10(1):2–8

    PubMed  CAS  Google Scholar 

  44. Cornwell M et al (2003) Pigment epithelium: derived factor regulates the vasculature and mass of the prostate and pancreas. Nat Med 9(6):774–780

    Article  PubMed  Google Scholar 

  45. Chung C et al (2008) Anti-angiogenic pigment epithelium-derived factor regulates hepatocyte triglyceride content through adipose triglyceride lipase (ATGL). J Hepatol 48:471–478

    Article  PubMed  CAS  Google Scholar 

  46. Yang H et al (2008) In-vivo xenograft murine human uveal melanoma model develops hepatic micrometastases. Melanoma Res 18(2):95–103

    Article  PubMed  Google Scholar 

  47. Yang H et al (2004) Low dose adjuvant angiostatin decreases hepatic micrometastasis in murine ocular melanoma model. Mol Vis 10:987–995

    PubMed  Google Scholar 

  48. Foss A et al (1996) Microvessel count predicts survival in uveal melanoma. Cancer Res 56:2900–2903

    PubMed  CAS  Google Scholar 

  49. Paget S (1889) The distribution of secondary growths in cancer of the breast. Lancet 133:3421

    Article  Google Scholar 

  50. Folkman J (2002) Role of angiogenesis in tumor growth and metastasis. Semin Oncol 29(6):15–18

    Article  PubMed  CAS  Google Scholar 

  51. Crosby M et al (2011) Serum vascular endothelial growth factor (VEGF) levels correlate with number and location of micrometastases in a murine model of uveal melanoma. Br J Ophthalmol 95:112–117

    Article  PubMed  Google Scholar 

  52. Quintero M et al (2004) Hypoxia-inducible factor (HIF-1) in cancer. Eur J Surg Oncol 5:465–468

    Article  Google Scholar 

  53. Rusciano D et al (1994) Murine model of liver metastasis. Invasion Metastasis 14(1–6):349–361

    Google Scholar 

  54. Rusciano D et al (1995) Expression of constitutively activated hepatocyte growth factor/scatter factor receptor (c-met) in B16 melanoma cells selected for enhanced liver colonization. Oncogene 11(10):1979–1987

    Google Scholar 

  55. Dithmar S et al (2003) Models of uveal melanoma: characterization of transgenic mice and other animal models for melanoma. In: Albert D and Polans A (ed) Ocular Oncology, CRC Press, Boca Raton, p 284–309

Download references

Acknowledgments

Supported in part by NIH R01CA176001 (HEG), P30EY06360 (HEG), T32EY007092 (JML), and an unrestricted departmental grant from Research to Prevent Blindness, Inc., New York, NY.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans E. Grossniklaus.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10585_2013_9596_MOESM1_ESM.tif

Supplemental Fig. 1 PEDF mRNA is present in PEDF+/+ mice but absent in PEDF-/- mice. Quantitative real-time PCR performed on mRNA collected from liver of PEDF+/+ versus PEDF-/- mice demonstrated that PEDF mRNA is present in PEDF+/+ mice but absent in PEDF-/- mice. PEDF+/+ mice exhibited cycle threshold values of 21.7, while PEDF-/- mice showed cycle threshold values of 33.7. Data are reported with standard error of the mean, n=4, *p<0.05 using one-way ANOVA with Newman-Keuls post-test (TIFF 2508 kb)

10585_2013_9596_MOESM2_ESM.tif

Supplemental Fig. 2 PEDF protein is present in PEDF+/+ mice but absent in PEDF-/- mice. a) Immunohistochemical staining for PEDF protein in the livers of PEDF+/+ and PEDF-/- mice reveal the abundant expression of PEDF in PEDF+/+ mouse liver (n=3) and the absence of PEDF protein in PEDF-/- mouse liver (n=3). Black bar = 50μm. b) Western blot assay of 200μg liver lysate revealed a band between 50-75 kDa in PEDF+/+ mice (n=3) that was absent from PEDF-/- mice (n=3) which correlated with 4ng positive control recombinant PEDF protein. Actin was used as a loading control (Millipore MAB1501, 1/5000). c) Densitometry quantification of the western blot revealed that the PEDF band seen in PEDF+/+ liver lysate was significant. Data are reported with standard error of the mean, n=3, p*<0.05 using unpaired t-test (TIFF 7404 kb)

10585_2013_9596_MOESM3_ESM.tif

Supplemental Fig. 3 B16-LS9 cells express PEDF protein. Western blot assay of 50μg B16-LS9 cell culture lysate revealed the presence of PEDF protein as indicated by a band between 50-75 kDa which correlated with 4ng positive control recombinant PEDF protein. An additional, unknown band was detected around 25 kDa. Actin was used as a loading control (TIFF 1679 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lattier, J.M., Yang, H., Crawford, S. et al. Host pigment epithelium-derived factor (PEDF) prevents progression of liver metastasis in a mouse model of uveal melanoma. Clin Exp Metastasis 30, 969–976 (2013). https://doi.org/10.1007/s10585-013-9596-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-013-9596-3

Keywords

Navigation