Skip to main content

Advertisement

Log in

BMP signalling controls the malignant potential of ascites-derived human epithelial ovarian cancer spheroids via AKT kinase activation

  • Research Paper
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

Epithelial ovarian cancer (EOC) cells have the ability to form multi-cellular aggregates in malignant ascites which dramatically alters cell signalling, survival, and metastatic potential. Herein, we demonstrate that patient ascites-derived EOC cells down-regulate endogenous bone morphogenetic protein (BMP) signalling by decreasing BMP ligand expression when grown in suspension culture to form spheroids. Enforced BMP signalling in these cells via constitutively-active BMP type I ALK3QD receptor expression causes the formation of smaller, more loosely-aggregated spheroids. Additionally, ALK3QD-expressing spheroids have an increased rate of adhesion and dispersion upon reattachment to substratum. Inhibition of endogenous BMP signalling using recombinant Noggin or small molecule inhibitor LDN-193189, on the other hand, opposed these phenotypic changes. To identify potential targets that impact the phenotype of EOC spheroids due to activated BMP signalling, we performed genome-wide expression analyses using Affymetrix arrays. Using the online Connectivity Map resource, the BMP signalling gene expression signature revealed that the AKT pathway is induced by activated BMP signalling in EOC cells; this finding was further validated by phospho-AKT immuno-blotting. In fact, treatment of EOC spheroids with an AKT inhibitor, Akti-1/2, reduced BMP-stimulated cell dispersion during reattachment as compared to controls. Thus, we have identified AKT as being one important downstream component of activated BMP signalling on EOC spheroid pathobiology, which may have important implications on the metastatic potential of this malignancy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

EOC:

Epithelial ovarian cancer

BMP:

Bone morphogenetic protein

TGFβ:

Transforming growth factor beta

OSE:

Ovarian surface epithelium

MIS:

Mullerian inhibiting substance

EMT:

Epithelial-mesenchymal transition

FBS:

Fetal bovine serum

ULA:

Ultra Low-Attachment

GFP:

Green fluorescent protein

HA:

Hemagglutinin

NG:

Noggin

CMAP:

Connectivity Map

PI3K:

Phosphatidylinositol 3-kinase

mTOR:

Mammalian target of rapamycin

References

  1. Lengyel E (2010) Ovarian cancer development and metastasis. Am J Pathol 177(3):1053–1064

    Article  PubMed  Google Scholar 

  2. Shield K, Ackland ML, Ahmed N, Rice GE (2009) Multicellular spheroids in ovarian cancer metastases: Biology and pathology. Gynecol Oncol 113(1):143–148

    Article  PubMed  Google Scholar 

  3. Kim TH, Mount CW, Gombotz WR, Pun SH (2010) The delivery of doxorubicin to 3-D multicellular spheroids and tumors in a murine xenograft model using tumor-penetrating triblock polymeric micelles. Biomaterials 31(28):7386–7397

    Article  PubMed  CAS  Google Scholar 

  4. Grun B, Benjamin E, Sinclair J, Timms JF, Jacobs IJ, Gayther SA, Dafou D (2009) Three-dimensional in vitro cell biology models of ovarian and endometrial cancer. Cell Prolif 42(2):219–228

    Article  PubMed  CAS  Google Scholar 

  5. Kim JB (2005) Three-dimensional tissue culture models in cancer biology. Semin Cancer Biol 15(5):365–377

    Article  PubMed  Google Scholar 

  6. Herrera B, van Dinther M, Ten Dijke P, Inman GJ (2009) Autocrine bone morphogenetic protein-9 signals through activin receptor-like kinase-2/Smad1/Smad4 to promote ovarian cancer cell proliferation. Cancer Res 69(24):9254–9262

    Article  PubMed  CAS  Google Scholar 

  7. Le Page C, Puiffe ML, Meunier L, Zietarska M, de Ladurantaye M, Tonin PN, Provencher D, Mes-Masson AM (2009) BMP-2 signaling in ovarian cancer and its association with poor prognosis. J Ovarian Res 2:4

    Article  PubMed  Google Scholar 

  8. Ma Y, Ma L, Guo Q, Zhang S (2010) Expression of bone morphogenetic protein-2 and its receptors in epithelial ovarian cancer and their influence on the prognosis of ovarian cancer patients. J Exp Clin Cancer Res 29:85

    Article  PubMed  Google Scholar 

  9. Moll F, Millet C, Noel D, Orsetti B, Bardin A, Katsaros D, Jorgensen C, Garcia M, Theillet C, Pujol P, Francois V (2006) Chordin is underexpressed in ovarian tumors and reduces tumor cell motility. FASEB J 20(2):240–250

    Article  PubMed  CAS  Google Scholar 

  10. Pils D, Wittinger M, Petz M, Gugerell A, Gregor W, Alfanz A, Horvat R, Braicu EI, Sehouli J, Zeillinger R, Mikulits W, Krainer M (2010) BAMBI is overexpressed in ovarian cancer and co-translocates with Smads into the nucleus upon TGF-beta treatment. Gynecol Oncol 117(2):189–197

    Article  PubMed  CAS  Google Scholar 

  11. Shepherd TG, Mujoomdar ML, Nachtigal MW (2010) Constitutive activation of BMP signalling abrogates experimental metastasis of OVCA429 cells via reduced cell adhesion. J Ovarian Res 3:5

    Article  PubMed  Google Scholar 

  12. Shepherd TG, Theriault BL, Nachtigal MW (2008) Autocrine BMP4 signalling regulates ID3 proto-oncogene expression in human ovarian cancer cells. Gene 414(1–2):95–105

    Article  PubMed  CAS  Google Scholar 

  13. Theriault BL, Shepherd TG, Mujoomdar ML, Nachtigal MW (2007) BMP4 induces EMT and Rho GTPase activation in human ovarian cancer cells. Carcinogenesis 28(6):1153–1162

    Article  PubMed  CAS  Google Scholar 

  14. Dunfield LD, Dwyer EJ, Nachtigal MW (2002) TGF beta-induced Smad signaling remains intact in primary human ovarian cancer cells. Endocrinology 143(4):1174–1181

    Article  PubMed  CAS  Google Scholar 

  15. Wei X, Dombkowski D, Meirelles K, Pieretti-Vanmarcke R, Szotek PP, Chang HL, Preffer FI, Mueller PR, Teixeira J, MacLaughlin DT, Donahoe PK (2010) Mullerian inhibiting substance preferentially inhibits stem/progenitors in human ovarian cancer cell lines compared with chemotherapeutics. Proc Natl Acad Sci USA 107(44):18874–18879

    Article  PubMed  CAS  Google Scholar 

  16. Shepherd TG, Theriault BL, Campbell EJ, Nachtigal MW (2006) Primary culture of ovarian surface epithelial cells and ascites-derived ovarian cancer cells from patients. Nat Protoc 1(6):2643–2649

    Article  PubMed  CAS  Google Scholar 

  17. Shepherd TG, Nachtigal MW (2003) Identification of a putative autocrine bone morphogenetic protein-signaling pathway in human ovarian surface epithelium and ovarian cancer cells. Endocrinology 144(8):3306–3314

    Article  PubMed  CAS  Google Scholar 

  18. Murakami G, Watabe T, Takaoka K, Miyazono K, Imamura T (2003) Cooperative inhibition of bone morphogenetic protein signaling by Smurf1 and inhibitory Smads. Mol Biol Cell 14(7):2809–2817

    Article  PubMed  CAS  Google Scholar 

  19. Zhu H, Kavsak P, Abdollah S, Wrana JL, Thomsen GH (1999) A SMAD ubiquitin ligase targets the BMP pathway and affects embryonic pattern formation. Nature 400(6745):687–693

    Article  PubMed  CAS  Google Scholar 

  20. Ivascu A, Kubbies M (2007) Diversity of cell-mediated adhesions in breast cancer spheroids. Int J Oncol 31(6):1403–1413

    PubMed  CAS  Google Scholar 

  21. Boergermann JH, Kopf J, Yu PB, Knaus P (2010) Dorsomorphin and LDN-193189 inhibit BMP-mediated Smad, p38 and Akt signalling in C2C12 cells. Int J Biochem Cell Biol 42(11):1802–1807

    Article  PubMed  CAS  Google Scholar 

  22. Cuny GD, Yu PB, Laha JK, Xing X, Liu JF, Lai CS, Deng DY, Sachidanandan C, Bloch KD, Peterson RT (2008) Structure-activity relationship study of bone morphogenetic protein (BMP) signaling inhibitors. Bioorg Med Chem Lett 18(15):4388–4392

    Article  PubMed  CAS  Google Scholar 

  23. Lamb J (2007) The Connectivity Map: a new tool for biomedical research. Nature reviews 7(1):54–60

    Article  PubMed  CAS  Google Scholar 

  24. Lamb J, Crawford ED, Peck D, Modell JW, Blat IC, Wrobel MJ, Lerner J, Brunet JP, Subramanian A, Ross KN, Reich M, Hieronymus H, Wei G, Armstrong SA, Haggarty SJ, Clemons PA, Wei R, Carr SA, Lander ES, Golub TR (2006) The connectivity map: using gene-expression signatures to connect small molecules, genes, and disease. Science 313(5795):1929–1935

    Article  PubMed  CAS  Google Scholar 

  25. Zhang SD, Gant TW (2008) A simple and robust method for connecting small-molecule drugs using gene-expression signatures. BMC Bioinformatics 9:258

    Article  PubMed  Google Scholar 

  26. Arboleda MJ, Lyons JF, Kabbinavar FF, Bray MR, Snow BE, Ayala R, Danino M, Karlan BY, Slamon DJ (2003) Overexpression of AKT2/protein kinase Bbeta leads to up-regulation of beta1 integrins, increased invasion, and metastasis of human breast and ovarian cancer cells. Cancer Res 63(1):196–206

    PubMed  CAS  Google Scholar 

  27. Bast RC Jr, Hennessy B, Mills GB (2009) The biology of ovarian cancer: new opportunities for translation. Nature reviews 9(6):415–428

    Article  PubMed  CAS  Google Scholar 

  28. Correa RJ, Peart T, Valdes YR, DiMattia GE, Shepherd TG (2011) Modulation of AKT activity is associated with reversible dormancy in ascites-derived epithelial ovarian cancer spheroids. Carcinogenesis 33(1):49–58

    Article  PubMed  Google Scholar 

  29. Meng Q, Xia C, Fang J, Rojanasakul Y, Jiang BH (2006) Role of PI3 K and AKT specific isoforms in ovarian cancer cell migration, invasion and proliferation through the p70S6K1 pathway. Cell Signal 18(12):2262–2271

    Article  PubMed  CAS  Google Scholar 

  30. Ahmed N, Thompson EW, Quinn MA (2007) Epithelial-mesenchymal interconversions in normal ovarian surface epithelium and ovarian carcinomas: an exception to the norm. J Cell Physiol 213(3):581–588

    Article  PubMed  CAS  Google Scholar 

  31. Tang MK, Zhou HY, Yam JW, Wong AS (2010) c-Met overexpression contributes to the acquired apoptotic resistance of nonadherent ovarian cancer cells through a cross talk mediated by phosphatidylinositol 3-kinase and extracellular signal-regulated kinase 1/2. Neoplasia 12(2):128–138

    PubMed  CAS  Google Scholar 

  32. Balemans W, Van Hul W (2002) Extracellular regulation of BMP signaling in vertebrates: a cocktail of modulators. Dev Biol 250(2):231–250

    Article  PubMed  CAS  Google Scholar 

  33. Goto K, Kamiya Y, Imamura T, Miyazono K, Miyazawa K (2007) Selective inhibitory effects of Smad6 on bone morphogenetic protein type I receptors. J Biol Chem 282(28):20603–20611

    Article  PubMed  CAS  Google Scholar 

  34. Itoh F, Asao H, Sugamura K, Heldin CH, ten Dijke P, Itoh S (2001) Promoting bone morphogenetic protein signaling through negative regulation of inhibitory Smads. EMBO J 20(15):4132–4142

    Article  PubMed  CAS  Google Scholar 

  35. Kamiya Y, Miyazono K, Miyazawa K (2010) Smad7 inhibits transforming growth factor-beta family type i receptors through two distinct modes of interaction. J Biol Chem 285(40):30804–30813

    Article  PubMed  CAS  Google Scholar 

  36. Casey RC, Burleson KM, Skubitz KM, Pambuccian SE, Oegema TR Jr, Ruff LE, Skubitz AP (2001) Beta 1-integrins regulate the formation and adhesion of ovarian carcinoma multicellular spheroids. Am J Pathol 159(6):2071–2080

    Article  PubMed  CAS  Google Scholar 

  37. Kim YJ, Sauer C, Testa K, Wahl JK, Svoboda RA, Johnson KR, Wheelock MJ, Knudsen KA (2005) Modulating the strength of cadherin adhesion: evidence for a novel adhesion complex. J Cell Sci 118(Pt 17):3883–3894

    Article  PubMed  CAS  Google Scholar 

  38. Napolitano AP, Chai P, Dean DM, Morgan JR (2007) Dynamics of the self-assembly of complex cellular aggregates on micromolded nonadhesive hydrogels. Tissue Eng 13(8):2087–2094

    Article  PubMed  CAS  Google Scholar 

  39. Tzanakakis ES, Hansen LK, Hu WS (2001) The role of actin filaments and microtubules in hepatocyte spheroid self-assembly. Cell Motil Cytoskeleton 48(3):175–189

    Article  PubMed  CAS  Google Scholar 

  40. Gamell C, Osses N, Bartrons R, Ruckle T, Camps M, Rosa JL, Ventura F (2008) BMP2 induction of actin cytoskeleton reorganization and cell migration requires PI3-kinase and Cdc42 activity. J Cell Sci 121(Pt 23):3960–3970

    Article  PubMed  CAS  Google Scholar 

  41. Burleson KM, Boente MP, Pambuccian SE, Skubitz AP (2006) Disaggregation and invasion of ovarian carcinoma ascites spheroids. J Transl Med 4:6

    Article  PubMed  Google Scholar 

  42. Iwanicki M, Davidowitz R, Ng M, Besser A, Muranen T, Merritt M, Danuser G, Ince T, Brugge J (2011) Ovarian cancer spheroids use myosin-generated force to clear the mesothelium. Cancer Discov. doi:10.1158/2159-8274.CD-11-0010

    PubMed  Google Scholar 

  43. Derynck R, Zhang YE (2003) Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature 425(6958):577–584

    Article  PubMed  CAS  Google Scholar 

  44. Guo X, Wang XF (2009) Signaling cross-talk between TGF-beta/BMP and other pathways. Cell Res 19(1):71–88

    Article  PubMed  CAS  Google Scholar 

  45. Perez VA, Ali Z, Alastalo TP, Ikeno F, Sawada H, Lai YJ, Kleisli T, Spiekerkoetter E, Qu X, Rubinos LH, Ashley E, Amieva M, Dedhar S, Rabinovitch M (2011) BMP promotes motility and represses growth of smooth muscle cells by activation of tandem Wnt pathways. J Cell Biol 192(1):171–188

    Article  PubMed  Google Scholar 

  46. Chen X, Liao J, Lu Y, Duan X, Sun W (2011) Activation of the PI3 K/Akt pathway mediates bone morphogenetic protein 2-induced invasion of pancreatic cancer cells Panc-1. Pathol Oncol Res 17(2):257–261

    Article  PubMed  Google Scholar 

  47. Graham TR, Odero-Marah VA, Chung LW, Agrawal KC, Davis R, Abdel-Mageed AB (2009) PI3 K/Akt-dependent transcriptional regulation and activation of BMP-2-Smad signaling by NF-kappaB in metastatic prostate cancer cells. Prostate 69(2):168–180

    Article  PubMed  CAS  Google Scholar 

  48. Kang MH, Kang HN, Kim JL, Kim JS, Oh SC, Yoo YA (2009) Inhibition of PI3 kinase/Akt pathway is required for BMP2-induced EMT and invasion. Oncol Rep 22(3):525–534

    PubMed  CAS  Google Scholar 

  49. Kang MH, Kim JS, Seo JE, Oh SC, Yoo YA (2010) BMP2 accelerates the motility and invasiveness of gastric cancer cells via activation of the phosphatidylinositol 3-kinase (PI3 K)/Akt pathway. Exp Cell Res 316(1):24–37

    Article  PubMed  CAS  Google Scholar 

  50. Langenfeld EM, Kong Y, Langenfeld J (2005) Bone morphogenetic protein-2-induced transformation involves the activation of mammalian target of rapamycin. Mol Cancer Res 3(12):679–684

    Article  PubMed  CAS  Google Scholar 

  51. Davidson B, Espina V, Steinberg SM, Florenes VA, Liotta LA, Kristensen GB, Trope CG, Berner A, Kohn EC (2006) Proteomic analysis of malignant ovarian cancer effusions as a tool for biologic and prognostic profiling. Clin Cancer Res 12(3 Pt 1):791–799

    Article  PubMed  CAS  Google Scholar 

  52. Schilder RJ, Sill MW, Lee RB, Shaw TJ, Senterman MK, Klein-Szanto AJ, Miner Z, Vanderhyden BC (2008) Phase II evaluation of imatinib mesylate in the treatment of recurrent or persistent epithelial ovarian or primary peritoneal carcinoma: a Gynecologic Oncology Group Study. J Clin Oncol 26(20):3418–3425

    Article  PubMed  CAS  Google Scholar 

  53. Massague J (2008) TGFbeta in Cancer. Cell 134(2):215–230

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge the essential contribution of our colleagues the gynaecologic oncology surgeons Monique Bertrand, Akira Sugimoto, and Michel Préfontaine at the London Regional Cancer Program in providing all clinical specimens used in this study, and Christine Gawlik for assistance with retrieval of clinical data. We thank Dominik Dobransky and Sara Fell for assisting with experiments, Carly Shanks for data analysis and graphic artwork, and Dr. Christopher Pin for insightful comments on this manuscript. We are also extremely grateful to the women with ovarian cancer who generously donated their ascites samples to support our research. This research was supported by funding from an Ovarian Cancer Canada—Canadian Institutes for Health Research partnership grant (Grant No. OVA-94083) and the Canadian Cancer Society (Grant No. 20109). T. Peart and R. Correa are supported by graduate scholarships from the Strategic Training Program in Cancer Research and Technology Transfer Program with funds from Canadian Institutes for Health Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Trevor G. Shepherd.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peart, T.M., Correa, R.J.M., Valdes, Y.R. et al. BMP signalling controls the malignant potential of ascites-derived human epithelial ovarian cancer spheroids via AKT kinase activation. Clin Exp Metastasis 29, 293–313 (2012). https://doi.org/10.1007/s10585-011-9451-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-011-9451-3

Keywords

Navigation