Skip to main content
Log in

Glycolysis inhibition by 2-deoxy-d-glucose reverts the metastatic phenotype in vitro and in vivo

  • Research Paper
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

Metastasis is the primary cause of death from many tumors, and novel anti-metastatic therapies are necessary. Recently, we showed that metastatic tumors down-regulate key oxidative phosphorylation (OXPHOS) genes in favor of glycolysis, a further enhancement of the Warburg effect. Therefore, we sought to determine if restriction of glycolysis using 2-deoxy-d-glucose (2DG) would lead to increased utilization of OXPHOS and inhibition of the metastatic phenotype. Noncytotoxic concentrations of 2DG dose-dependently inhibited in vitro migration and invasion in the highly metastatic DLM8-luc-M1 osteosarcoma (OS) cell line, as well as other metastatic human, canine, and murine cancer cells of different histotypes. This was associated with cytoskeletal rearrangement and inhibition of cathepsin L expression. A dose-dependent shift toward OXPHOS was confirmed by demonstrating increased oxygen utilization and decreased lactate production in 2DG treated cells. Finally, 2DG treatment significantly delayed metastasis and prolonged survival in an orthotopic postsurgical OS model. In conclusion, this work suggests that forcing cells away from glycolysis may inhibit key components of the metastatic phenotype, providing a novel avenue for metastasis prevention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bielack SS, Carrle D, Hardes J et al (2008) Bone tumors in adolescents and young adults. Curr Treat Option Oncol 9(1):67–80

    Article  Google Scholar 

  2. Khanna C (2008) Novel targets with potential therapeutic applications in osteosarcoma. Curr Oncol Rep 10(4):350–358

    Article  PubMed  CAS  Google Scholar 

  3. Ramaswamy S, Ross KN, Lander ES et al (2003) A molecular signature of metastasis in primary solid tumors. Nat Genet 33(1):49–54

    Article  PubMed  CAS  Google Scholar 

  4. Ptitsyn AA, Weil MM, Thamm DH (2008) Systems biology approach to identification of biomarkers for metastatic progression in cancer. BMC Bioinform 9(Suppl 9):S8

    Article  Google Scholar 

  5. Chen Y, Cairns R, Papandreou I et al (2009) Oxygen consumption can regulate the growth of tumors, a new perspective on the warburg effect. PloS One 4(9):e7033

    Article  PubMed  Google Scholar 

  6. Ramanathan A, Wang C, Schreiber SL (2005) Perturbational profiling of a cell-line model of tumorigenesis by using metabolic measurements. Proc Natl Acad Sci USA 102(17):5992–5997

    Article  PubMed  CAS  Google Scholar 

  7. Acebo P, Giner D, Calvo P et al (2009) Cancer abolishes the tissue type-specific differences in the phenotype of energetic metabolism. Transl Oncol 2(3):138–145

    PubMed  Google Scholar 

  8. Amuthan G, Biswas G, Ananadatheerthavarada HK et al (2002) Mitochondrial stress-induced calcium signaling, phenotypic changes and invasive behavior in human lung carcinoma A549 cells. Oncogene 21(51):7839–7849

    Article  PubMed  CAS  Google Scholar 

  9. Amuthan G, Biswas G, Zhang SY et al (2001) Mitochondria-to-nucleus stress signaling induces phenotypic changes, tumor progression and cell invasion. EMBO J 20(8):1910–1920

    Article  PubMed  CAS  Google Scholar 

  10. Denhardt DT, Greenberg AH, Egan SE et al (1987) Cysteine proteinase cathepsin L expression correlates closely with the metastatic potential of H-ras-transformed murine fibroblasts. Oncogene 2(1):55–59

    PubMed  CAS  Google Scholar 

  11. Frade R, Rodrigues-Lima F, Huang S et al (1998) Procathepsin-L, a proteinase that cleaves human C3 (the third component of complement), confers high tumorigenic and metastatic properties to human melanoma cells. Cancer Res 58(13):2733–2736

    PubMed  CAS  Google Scholar 

  12. Brown J (1962) Effects of 2-deoxyglucose on carbohydrate metabolism: review of the literature and studies in the rat. Metab Clin Exp 11:1098–1112

    PubMed  CAS  Google Scholar 

  13. Pelicano H, Martin DS, Xu RH et al (2006) Glycolysis inhibition for anticancer treatment. Oncogene 25(34):4633–4646

    Article  PubMed  CAS  Google Scholar 

  14. Geschwind JF, Ko YH, Torbenson MS et al (2002) Novel therapy for liver cancer: direct intraarterial injection of a potent inhibitor of ATP production. Cancer Res 62(14):3909–3913

    PubMed  CAS  Google Scholar 

  15. Fulda S, Galluzzi L, Kroemer G (2010) Targeting mitochondria for cancer therapy. Nat Rev 9(6):447–464

    Article  CAS  Google Scholar 

  16. Sottnik JL, Duval DL, Ehrhart EJ et al (2010) An orthotopic, postsurgical model of luciferase transfected murine osteosarcoma with spontaneous metastasis. Clin Exp Metastasis 27(3):151–160

    Article  PubMed  Google Scholar 

  17. Dehn DL, Siegel D, Zafar KS et al (2006) 5-Methoxy-1,2-dimethyl-3-[(4-nitrophenoxy)methyl]indole-4,7-dione, a mechanism-based inhibitor of NAD(P)H:quinoneoxidoreductase 1, exhibits activity against human pancreatic cancer in vitro and in vivo. Mol Cancer Ther 5(7):1702–1709

    Article  PubMed  CAS  Google Scholar 

  18. Janeway KA, Walkley CR (2010) Modeling human osteosarcoma in the mouse: from bedside to bench. Bone 47(5):859–865

    Article  PubMed  Google Scholar 

  19. Souhami RL, Craft AW, Van der Eijken JW et al (1997) Randomised trial of two regimens of chemotherapy in operable osteosarcoma: a study of the European Osteosarcoma Intergroup. Lancet 350(9082):911–917

    Article  PubMed  CAS  Google Scholar 

  20. Liu H, Hu YP, Savaraj N et al (2001) Hypersensitization of tumor cells to glycolytic inhibitors. Biochemistry 40(18):5542–5547

    Article  PubMed  CAS  Google Scholar 

  21. Maschek G, Savaraj N, Priebe W et al (2004) 2-Deoxy-d-glucose increases the efficacy of adriamycin and paclitaxel in human osteosarcoma and non-small cell lung cancers in vivo. Cancer Res 64(1):31–34

    Article  PubMed  CAS  Google Scholar 

  22. Garber K (2004) Energy boost: the Warburg effect returns in a new theory of cancer. J Natl Cancer Inst 96(24):1805–1806

    Article  PubMed  Google Scholar 

  23. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100(1):57–70

    Article  PubMed  CAS  Google Scholar 

  24. Hua Y, Qiu Y, Zhao A et al (2011) Dynamic metabolic transformation in tumor invasion and metastasis in mice with LM-8 osteosarcoma cell transplantation. J Proteome Res 10(8):3513–3521

    Google Scholar 

  25. Levine AJ, Puzio-Kuter AM (2010) The control of the metabolic switch in cancers by oncogenes and tumor suppressor genes. Science (New York, NY) 330(6009):1340–1344

    Article  CAS  Google Scholar 

  26. Plas DR, Thompson CB (2005) Akt-dependent transformation: there is more to growth than just surviving. Oncogene 24(50):7435–7442

    Article  PubMed  CAS  Google Scholar 

  27. Vander Heiden MG, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science (New York, NY) 324(5930):1029–1033

    Article  Google Scholar 

  28. Biswas G, Tang W, Sondheimer N et al (2008) A distinctive physiological role for IkappaBbeta in the propagation of mitochondrial respiratory stress signaling. J Biol Chem 283(18):12586–12594

    Article  PubMed  CAS  Google Scholar 

  29. Guha M, Srinivasan S, Biswas G et al (2007) Activation of a novel calcineurin-mediated insulin-like growth factor-1 receptor pathway, altered metabolism, and tumor cell invasion in cells subjected to mitochondrial respiratory stress. J Biol Chem 282(19):14536–14546

    Article  PubMed  CAS  Google Scholar 

  30. Cuezva JM, Krajewska M, de Heredia ML et al (2002) The bioenergetic signature of cancer: a marker of tumor progression. Cancer Res 62(22):6674–6681

    PubMed  CAS  Google Scholar 

  31. Willers IM, Isidoro A, Ortega AD et al (2010) Selective inhibition of beta-F1-ATPase mRNA translation in human tumours. Biochem J 426(3):319–326

    Article  PubMed  CAS  Google Scholar 

  32. Simons AL, Fath MA, Mattson DM et al (2007) Enhanced response of human head and neck cancer xenograft tumors to cisplatin combined with 2-deoxy-d-glucose correlates with increased 18F-FDG uptake as determined by PET imaging. Int J Radiat Oncol Biol Phys 69(4):1222–1230

    Article  PubMed  Google Scholar 

  33. Kurtoglu M, Maher JC, Lampidis TJ (2007) Differential toxic mechanisms of 2-deoxy-d-glucose versus 2-fluorodeoxy-d-glucose in hypoxic and normoxic tumor cells. Antioxid Redox Signal 9(9):1383–1390

    Article  PubMed  CAS  Google Scholar 

  34. Lampidis TJ, Kurtoglu M, Maher JC et al (2006) Efficacy of 2-halogen substituted d-glucose analogs in blocking glycolysis and killing “hypoxic tumor cells”. Cancer Chemother Pharmacol 58(6):725–734

    Article  PubMed  CAS  Google Scholar 

  35. Maher JC, Savaraj N, Priebe W et al (2005) Differential sensitivity to 2-deoxy-d-glucose between two pancreatic cell lines correlates with GLUT-1 expression. Pancreas 30(2):e34–e39

    Article  PubMed  Google Scholar 

  36. Marin-Hernandez A, Gallardo-Perez JC, Ralph SJ et al (2009) HIF-1alpha modulates energy metabolism in cancer cells by inducing over-expression of specific glycolytic isoforms. Mini Rev Med Chem 9(9):1084–1101

    Article  PubMed  CAS  Google Scholar 

  37. Minor RK, Smith DL Jr, Sossong AM et al (2010) Chronic ingestion of 2-deoxy-d-glucose induces cardiac vacuolization and increases mortality in rats. Toxicol Appl Pharmacol 243(3):332–339

    Article  PubMed  CAS  Google Scholar 

  38. Dwarakanath BS, Singh D, Banerji AK et al (2009) Clinical studies for improving radiotherapy with 2-deoxy-d-glucose: present status and future prospects. J Cancer Res Ther 5(Suppl 1):S21–S26

    Article  PubMed  CAS  Google Scholar 

  39. Stein M, Lin H, Jeyamohan C et al (2010) Targeting tumor metabolism with 2-deoxyglucose in patients with castrate-resistant prostate cancer and advanced malignancies. Prostate 70(13):1388–1394

    Article  PubMed  CAS  Google Scholar 

  40. Kroemer G, Pouyssegur J (2008) Tumor cell metabolism: cancer’s Achilles’ heel. Cancer Cell 13(6):472–482

    Article  PubMed  CAS  Google Scholar 

  41. Boutros J, Almasan A (2009) Combining 2-deoxy-d-glucose with electron transport chain blockers: a double-edged sword. Cancer Biol Ther 8(13):1237–1238

    Article  PubMed  CAS  Google Scholar 

  42. Fath MA, Diers AR, Aykin-Burns N et al (2009) Mitochondrial electron transport chain blockers enhance 2-deoxy-d-glucose induced oxidative stress and cell killing in human colon carcinoma cells. Cancer Biol Ther 8(13):1228–1236

    Article  PubMed  CAS  Google Scholar 

  43. Ben Sahra I, Laurent K, Giuliano S et al (2010) Targeting cancer cell metabolism: the combination of metformin and 2-deoxyglucose induces p53-dependent apoptosis in prostate cancer cells. Cancer Res 70(6):2465–2475

    Article  PubMed  CAS  Google Scholar 

  44. Sahra IB, Tanti JF, Bost F (2010) The combination of metformin and 2-deoxyglucose inhibits autophagy and induces AMPK dependent apoptosis in prostate cancer cells. Autophagy 6(5). doi:10.1158/0008-5472.CAN-09-2782

  45. Zhao Y, Liu H, Liu Z et al (2011) Overcoming trastuzumab resistance in breast cancer by targeting dysregulated glucose metabolism. Cancer Res 71(13):4585–4597

    Article  PubMed  CAS  Google Scholar 

  46. Kurtoglu M, Gao N, Shang J et al (2007) Under normoxia, 2-deoxy-d-glucose elicits cell death in select tumor types not by inhibition of glycolysis but by interfering with N-linked glycosylation. Mol Cancer Ther 6(11):3049–3058

    Article  PubMed  CAS  Google Scholar 

  47. Maher JC, Wangpaichitr M, Savaraj N et al (2007) Hypoxia-inducible factor-1 confers resistance to the glycolytic inhibitor 2-deoxy-d-glucose. Mol Cancer Ther 6(2):732–741

    Article  PubMed  CAS  Google Scholar 

  48. Langbein S, Frederiks WM, Zur Hausen A et al (2008) Metastasis is promoted by a bioenergetic switch: new targets for progressive renal cell cancer. Int J Cancer 122(11):2422–2428

    Article  PubMed  CAS  Google Scholar 

  49. Krockenberger M, Engel JB, Schmidt M et al (2010) Expression of transketolase-like 1 protein (TKTL1) in human endometrial cancer. Anticancer Res 30(5):1653–1659

    PubMed  CAS  Google Scholar 

  50. Sun W, Liu Y, Glazer CA et al (2010) TKTL1 is activated by promoter hypomethylation and contributes to head and neck squamous cell carcinoma carcinogenesis through increased aerobic glycolysis and HIF1alpha stabilization. Clin Cancer Res 16(3):857–866

    Article  PubMed  CAS  Google Scholar 

  51. Volker HU, Hagemann C, Coy J et al (2008) Expression of transketolase-like 1 and activation of Akt in grade IV glioblastomas compared with grades II and III astrocyticgliomas. Am J Clin Pathol 130(1):50–57

    Article  PubMed  Google Scholar 

  52. Xu X, Zur Hausen A, Coy JF et al (2009) Transketolase-like protein 1 (TKTL1) is required for rapid cell growth and full viability of human tumor cells. Int J Cancer 124(6):1330–1337

    Article  PubMed  CAS  Google Scholar 

  53. Xi H, Kurtoglu M, Liu H et al (2011) 2-Deoxy-d-glucose activates autophagy via endoplasmic reticulum stress rather than ATP depletion. Cancer Chemother Pharmacol 67(4):899–910

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Jenette Shoeneman, Laura Chubb, Dr. Scott Hafeman, and Dr. Jessica Cantrell for assistance with the animal experiments, Polly Webb for assistance with lactate measurements, Dr. David Siegel (University of Colorado Health Sciences Center) for his help in performing the oxygen utilization experiments, and Dr. Daniel Gustafson for critical manuscript review. This work was supported by the Colorado State University Supercluster and the estate of Mr. Jeffery Harbers.

Conflict of interest

The authors declare they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas H. Thamm.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10585_2011_9417_MOESM1_ESM.tiff

Supplemental Fig. 1: 2DG does not significantly impact clonogenic cell growth. DLM8-Luc-M1 cells were treated with varying concentrations of 2DG for 24 h, followed by plating in 10 cm dishes. Colonies were stained with crystal violet and counted manually. There was no significant difference in colony formation upon 2DG exposure. Error bars indicate standard deviation. (TIFF 5691 kb)

10585_2011_9417_MOESM2_ESM.tif

Supplemental Fig. 2: 2DG does not significantly impact cell luminosity. a DLM8-luc-M1 cells were treated with varying concentrations of 2DG before the addition of luciferin and determination of photon flux. Each condition was analyzed in triplicate and mean ± SD depicted. Mice were challenged subcutaneously with DLM8-luc-M1 tumor cells. Once the mean tumor diameter was 5 mm, treatment with 2DG was initiated. b No significant inhibition of tumor cross-sectional area was observed. Tumor bioluminescence was measured to determine if 2DG inhibited photon flux. c There was no significant difference in tumor bioluminescence when normalized by tumor cross-sectional area. (TIFF 5465 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sottnik, J.L., Lori, J.C., Rose, B.J. et al. Glycolysis inhibition by 2-deoxy-d-glucose reverts the metastatic phenotype in vitro and in vivo. Clin Exp Metastasis 28, 865–875 (2011). https://doi.org/10.1007/s10585-011-9417-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-011-9417-5

Keywords

Navigation