Skip to main content

Advertisement

Log in

Tumor cell-derived Timp-1 is necessary for maintaining metastasis-promoting Met-signaling via inhibition of Adam-10

  • Research Paper
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

In many different tumor entities, increased expression of tissue inhibitor of metalloproteinases-1 (Timp-1) is associated with poor prognosis. We previously reported in mouse models that elevated systemic levels of Timp-1 induce a gene expression signature in the liver microenvironment increasing the susceptibility of this organ to tumor cells. This host effect was dependent on increased activity of the hepatocyte growth factor (Hgf)/hepatocyte growth factor receptor (Met) signaling pathway. In a recent study we showed that Met signaling is regulated by Timp-1 as it inhibits the Met sheddase A disintegrin and metalloproteinase-10 (Adam-10). The aim of the present study was to elucidate whether the metastatic potential of tumor cells benefits from autocrine Timp-1 as well and involves Adam-10 and Met signaling. In a syngeneic murine model of experimental liver metastasis Timp-1 expression and Met signaling were localized within metastatic colonies and expressed by tumor cells. Knock down of tumor cell Timp-1 suppressed Met signaling in metastases and inhibited metastasis formation and tumor cell-scattering in the liver. In vitro, knock down of tumor cell Timp-1 prevented Hgf-induced Met phosphorylation. Consequently, knock down of Met sheddase Adam-10 triggered auto-phosphorylation and responsiveness to Hgf. Accordingly, Adam-10 knock down increased Met phosphorylation in metastatic foci and induced tumor cell scattering into the surrounding liver parenchyma. In conclusion, these findings show that tumor cell-derived Timp-1 acts as a positive regulator of the metastatic potential and support the concept that proteases and their natural inhibitors, as members of the protease web, are major players of signaling during normal homeostasis and disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

DAPI:

4′,6-Diamidine-2-phenylindole

Hgf:

Hepatocyte growth factor

i.v.:

Intraveneous

Met:

Hepatocyte growth factor receptor

MMP:

Matrix metalloproteinase

qRT-PCR:

Quantitative real-time polymerase chain reaction

rec:

Recombinant

SF:

Scatter factor

sh:

Small hairpin

TBS:

2-Amino-2-(hydroxymethyl)-propane-1,3-diole-buffered saline

Timp:

Tissue inhibitor of metalloproteinases

X-Gal:

5-Bromo-4-chloro-3-indolyl-β-d-galactopyranoside

References

  1. Terpos E, Dimopoulos MA, Shrivastava V et al (2010) High levels of serum TIMP-1 correlate with advanced disease and predict for poor survival in patients with multiple myeloma treated with novel agents. Leuk Res 34(3):399–402

    Article  PubMed  CAS  Google Scholar 

  2. Aaberg-Jessen C, Christensen K, Offenberg H et al (2009) Low expression of tissue inhibitor of metalloproteinases-1 (TIMP-1) in glioblastoma predicts longer patient survival. J Neurooncol 95(1):117–128

    Article  PubMed  CAS  Google Scholar 

  3. Scrideli CA, Cortez MA, Yunes JA et al (2010) mRNA expression of matrix metalloproteinases (MMPs) 2 and 9 and tissue inhibitor of matrix metalloproteinases (TIMPs) 1 and 2 in childhood acute lymphoblastic leukemia: potential role of TIMP1 as an adverse prognostic factor. Leuk Res 34(1):32–37

    Article  PubMed  CAS  Google Scholar 

  4. Rauvala M, Puistola U, Turpeenniemi-Hujanen T (2005) Gelatinases and their tissue inhibitors in ovarian tumors; TIMP-1 is a predictive as well as a prognostic factor. Gynecol Oncol 99(3):656–663

    Article  PubMed  CAS  Google Scholar 

  5. Chirco R, Liu XW, Jung KK et al (2006) Novel functions of TIMPs in cell signaling. Cancer Metastasis Rev 25(1):99–113

    Article  PubMed  CAS  Google Scholar 

  6. Mook OR, Frederiks WM, Van Noorden CJ (2004) The role of gelatinases in colorectal cancer progression and metastasis. Biochim Biophys Acta 1705(2):69–89

    PubMed  CAS  Google Scholar 

  7. Egeblad M, Werb Z (2002) New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer 2(3):161–174

    Article  PubMed  CAS  Google Scholar 

  8. Coussens LM, Fingleton B, Matrisian LM (2002) Matrix metalloproteinase inhibitors and cancer: trials and tribulations. Science 295(5564):2387–2392

    Article  PubMed  CAS  Google Scholar 

  9. Deryugina EI, Quigley JP (2006) Matrix metalloproteinases and tumor metastasis. Cancer Metastasis Rev 25(1):9–34

    Article  PubMed  CAS  Google Scholar 

  10. Gutierrez-Fernandez A, Fueyo A, Folgueras AR et al (2008) Matrix metalloproteinase-8 functions as a metastasis suppressor through modulation of tumor cell adhesion and invasion. Cancer Res 68(8):2755–2763

    Article  PubMed  CAS  Google Scholar 

  11. Garg P, Sarma D, Jeppsson S et al (2010) Matrix metalloproteinase-9 functions as a tumor suppressor in colitis-associated cancer. Cancer Res 70(2):792–801

    Article  PubMed  CAS  Google Scholar 

  12. Krüger A et al (2001) Hydroxamate-type matrix metalloproteinase inhibitor batimastat promotes liver metastasis. Cancer Res 61(4):1272–1275

    PubMed  Google Scholar 

  13. Schelter F, Halbgewachs B, Baumler P et al (2011) Tissue inhibitor of metalloproteinases-1-induced scattered liver metastasis is mediated by hypoxia-inducible factor-1alpha. Clin Exp Metastasis 28(2):91–99

    Article  PubMed  CAS  Google Scholar 

  14. Kopitz C, Gerg M, Bandapalli OR et al (2007) Tissue inhibitor of metalloproteinases-1 promotes liver metastasis by induction of hepatocyte growth factor signaling. Cancer Res 67(18):8615–8623

    Article  PubMed  CAS  Google Scholar 

  15. Krüger A (2009) Functional genetic mouse models: promising tools for investigation of the proteolytic internet. Biol Chem 390(2):91–97

    Article  PubMed  Google Scholar 

  16. Overall CM, Kleifeld O (2006) Tumour microenvironment—opinion: validating matrix metalloproteinases as drug targets and anti-targets for cancer therapy. Nat Rev Cancer 6(3):227–239

    Article  PubMed  CAS  Google Scholar 

  17. Krüger A, Kates RE, Edwards DR (2010) Avoiding spam in the proteolytic internet: future strategies for anti-metastatic MMP inhibition. Biochim Biophys Acta 1803(1):95–102

    Article  PubMed  Google Scholar 

  18. Gerg M, Kopitz C, Schaten S et al (2008) Distinct functionality of tumor cell-derived gelatinases during formation of liver metastases. Mol Cancer Res 6(3):341–351

    Article  PubMed  CAS  Google Scholar 

  19. Schelter F, Gerg M, Halbgewachs B et al (2010) Identification of a survival-independent metastasis-enhancing role of hypoxia-inducible factor-1alpha with a hypoxia-tolerant tumor cell line. J Biol Chem 285(34):26182–26189

    Article  PubMed  CAS  Google Scholar 

  20. Naldini L, Weidner KM, Vigna E et al (1991) Scatter factor and hepatocyte growth factor are indistinguishable ligands for the MET receptor. EMBO J 10(10):2867–2878

    PubMed  CAS  Google Scholar 

  21. Boccaccio C, Comoglio PM (2006) Invasive growth: a MET-driven genetic programme for cancer and stem cells. Nat Rev Cancer 6(8):637–645

    Article  PubMed  CAS  Google Scholar 

  22. Trusolino L, Bertotti A, Comoglio PM (2010) MET signalling: principles and functions in development, organ regeneration and cancer. Nat Rev Mol Cell Biol 11(12):834–848

    Article  PubMed  CAS  Google Scholar 

  23. Comoglio PM, Giordano S, Trusolino L (2008) Drug development of MET inhibitors: targeting oncogene addiction and expedience. Nat Rev Drug Discov 7(6):504–516

    Article  PubMed  CAS  Google Scholar 

  24. Murphy G (2008) The ADAMs: signalling scissors in the tumour microenvironment. Nat Rev Cancer 8(12):929–941

    Article  PubMed  CAS  Google Scholar 

  25. Amour A, Knight CG, Webster A et al (2000) The in vitro activity of ADAM-10 is inhibited by TIMP-1 and TIMP-3. FEBS Lett 473(3):275–279

    Article  PubMed  CAS  Google Scholar 

  26. Schelter F, Kobuch J, Moss ML et al (2010) A disintegrin and metalloproteinase-10 (ADAM-10) mediates DN30 antibody-induced shedding of the met surface receptor. J Biol Chem 285(34):26335–26340

    Article  PubMed  CAS  Google Scholar 

  27. Schirrmeister W, Gnad T, Wex T et al (2009) Ectodomain shedding of E-cadherin and c-Met is induced by Helicobacter pylori infection. Exp Cell Res 315(20):3500–3508

    Article  PubMed  CAS  Google Scholar 

  28. Koshariya M, Jagad RB, Kawamoto J et al (2007) An update and our experience with metastatic liver disease. Hepatogastroenterology 54(80):2232–2239

    PubMed  Google Scholar 

  29. Sporn MB (1996) The war on cancer. Lancet 347(9012):1377–1381

    Article  PubMed  CAS  Google Scholar 

  30. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674

    Article  PubMed  CAS  Google Scholar 

  31. Krüger A, Schirrmacher V, von Hoegen P (1994) Scattered micrometastases visualized at the single-cell level: detection and re-isolation of lacZ-labeled metastasized lymphoma cells. Int J Cancer 58(2):275–284

    Article  PubMed  Google Scholar 

  32. Soneoka Y, Cannon PM, Ramsdale EE et al (1995) A transient three-plasmid expression system for the production of high titer retroviral vectors. Nucleic Acids Res 23(4):628–633

    Article  PubMed  CAS  Google Scholar 

  33. Krüger A, Schirrmacher V, Khokha R (1998) The bacterial lacZ gene: an important tool for metastasis research and evaluation of new cancer therapies. Cancer Metastasis Rev 17(3):285–294

    Article  PubMed  Google Scholar 

  34. Schrötzlmair F, Kopitz C, Halbgewachs B et al (2010) Tissue inhibitor of metalloproteinases-1-induced scattered liver metastasis is mediated by host-derived urokinase-type plasminogen activator. J Cell Mol Med 14(12):2760–2770

    Article  PubMed  Google Scholar 

  35. Brand K et al (2000) Treatment of colorectal liver metastases by adenoviral transfer of tissue inhibitor of metalloproteinases-2 into the liver tissue. Cancer Res 60(20):5723–5730

    PubMed  CAS  Google Scholar 

  36. Baker AH, Edwards DR, Murphy G (2002) Metalloproteinase inhibitors: biological actions and therapeutic opportunities. J Cell Sci 115(Pt 19):3719–3727

    Article  PubMed  CAS  Google Scholar 

  37. Bajou K et al (1998) Absence of host plasminogen activator inhibitor 1 prevents cancer invasion and vascularization. Nat Med 4(8):923–928

    Article  PubMed  CAS  Google Scholar 

  38. Krüger A, Fata JE, Khokha R (1997) Altered tumor growth and metastasis of a T-cell lymphoma in Timp-1 transgenic mice. Blood 90(5):1993–2000

    PubMed  Google Scholar 

  39. Elezkurtaj S, Kopitz C, Baker AH et al (2004) Adenovirus-mediated overexpression of tissue inhibitor of metalloproteinases-1 in the liver: efficient protection against T-cell lymphoma and colon carcinoma metastasis. J Gene Med 6(11):1228–1237

    Article  PubMed  CAS  Google Scholar 

  40. Brew K, Nagase H (2010) The tissue inhibitors of metalloproteinases (TIMPs): an ancient family with structural and functional diversity. Biochim Biophys Acta 1803(1):55–71

    Article  PubMed  CAS  Google Scholar 

  41. Foveau B et al (2009) Down-regulation of the met receptor tyrosine kinase by presenilin-dependent regulated intramembrane proteolysis. Mol Biol Cell 20(9):2495–2507

    Article  PubMed  CAS  Google Scholar 

  42. Amour A et al (1998) TNF-alpha converting enzyme (TACE) is inhibited by TIMP-3. FEBS Lett 435(1):39–44

    Article  PubMed  CAS  Google Scholar 

  43. Moss ML, Stoeck A, Yan W et al (2008) ADAM10 as a target for anti-cancer therapy. Curr Pharm Biotechnol 9(1):2–8

    Article  PubMed  CAS  Google Scholar 

  44. Würtz SO, Schrohl AS, Sorensen NM et al (2005) Tissue inhibitor of metalloproteinases-1 in breast cancer. Endocr Relat Cancer 12(2):215–227

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Katja Honert and Stefan Grötzinger (all from Institut für Experimentelle Onkologie und Therapieforschung des Klinikums rechts der Isar, Technische Universität München, Munich, Germany) for their expert technical assistance and Gillian Murphy for providing the anti-Timp-1 antibody. For financial support, the authors thank the European Union Research Framework Programme 7, project HEALTH-2007-201279/Microenvimet (to Achim Krüger, Carla Boccaccio and Paolo Comoglio).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Achim Krüger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schelter, F., Grandl, M., Seubert, B. et al. Tumor cell-derived Timp-1 is necessary for maintaining metastasis-promoting Met-signaling via inhibition of Adam-10. Clin Exp Metastasis 28, 793–802 (2011). https://doi.org/10.1007/s10585-011-9410-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-011-9410-z

Keywords

Navigation