Skip to main content

Advertisement

Log in

Differential expression of tartrate-resistant acid phosphatase isoforms 5a and 5b by tumor and stromal cells in human metastatic bone disease

  • Research Paper
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

Tartrate-resistant acid phosphatase (TRAP) exists in human serum as two major isoforms, monomeric 5a and proteolytically processed enzymatically active 5b. The 5b isoform is secreted by osteoclasts and has recently been advocated as a serum marker for bone metastasis in breast cancer patients. The 5a isoform, on the other hand, is not bone-derived and has been proposed to be a marker of activated macrophages and chronic inflammation. In this study, expression of TRAP protein and enzymatic activity in bone metastases from different primary sites was examined. TRAP activity was high in bone metastases from prostate cancer, intermediate in breast cancer, and low in lung and kidney cancers. The partially purified TRAP from breast cancer bone metastasis samples exhibited the enzymatic characteristics of purple acid phosphatase. Both 5a and 5b isoforms were expressed in bone metastases of different histogenetic origins, i.e. prostate, breast, lung and kidney, and also a novel previously unreported 42 kDa variant of the TRAP 5a isoform was identified in bone metastases. This novel TRAP 5a isoform was absent in human bone, indicating that the 42 kDa variant is specific to metastatic cancer tissue. Immunohistochemistry revealed that metastatic cancer cells were the predominant source of TRAP 5a, whereas tumor-associated macrophages and occasionally multinucleated giant cells in the tumor stroma preferentially expressed the proteolytically processed TRAP 5b variant. Our results indicate the presence of a previously unstudied variant of monomeric TRAP 5a in cancer cells, which may have functional and diagnostic implications. Moreover, the presence of TRAP-positive macrophages in bone metastases could, together with cancer cells and osteoclasts, contribute to the elevated levels of serum TRAP activity observed in patients with bone metastases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

TRAP:

Tartrate-resistant acid phosphatase

OPN:

Osteopontin

BSA:

Bovine serum albumin

FPLC:

Fast protein liquid chromatography

pNPP:

p-Nitrophenylphosphate

PVDF:

Polyvinylidene fluoride

References

  1. Clark PE, Torti FM (2003) Prostate cancer and bone metastases: medical treatment. Clin Orthop Relat Res: S148-157

  2. Roodman GD (2004) Mechanisms of bone metastasis. N Engl J Med 350:1655–1664

    Article  CAS  PubMed  Google Scholar 

  3. El-Tanani MK (2008) Role of osteopontin in cellular signaling and metastatic phenotype. Front Biosci 13:4276–4284

    Article  CAS  PubMed  Google Scholar 

  4. Hayman AR, Bune AJ, Bradley JR, Rashbass J, Cox TM (2000) Osteoclastic tartrate-resistant acid phosphatase (Acp 5): its localization to dendritic cells and diverse murine tissues. J Histochem Cytochem 48:219–228

    CAS  PubMed  Google Scholar 

  5. Hayman AR, Macary P, Lehner PJ, Cox TM (2001) Tartrate-resistant acid phosphatase (Acp 5): identification in diverse human tissues and dendritic cells. J Histochem Cytochem 49:675–684

    CAS  PubMed  Google Scholar 

  6. Ljusberg J, Ek-Rylander B, Andersson G (1999) Tartrate-resistant purple acid phosphatase is synthesized as a latent proenzyme and activated by cysteine proteinases. Biochem J 343 Pt 1:63-69

    Google Scholar 

  7. Ljusberg J, Wang Y, Lang P, Norgard M, Dodds R, Hultenby K, Ek-Rylander B, Andersson G (2005) Proteolytic excision of a repressive loop domain in tartrate-resistant acid phosphatase by cathepsin K in osteoclasts. J Biol Chem 280:28370–28381

    Article  CAS  PubMed  Google Scholar 

  8. Oddie GW, Schenk G, Angel NZ, Walsh N, Guddat LW, de Jersey J, Cassady AI, Hamilton SE, Hume DA (2000) Structure, function, and regulation of tartrate-resistant acid phosphatase. Bone 27:575–584

    Article  CAS  PubMed  Google Scholar 

  9. Janckila AJ, Takahashi K, Sun SZ, Yam LT (2001) Tartrate-resistant acid phosphatase isoform 5b as serum marker for osteoclastic activity. Clin Chem 47:74–80

    CAS  PubMed  Google Scholar 

  10. Rissanen JP, Suominen MI, Peng Z, Halleen JM (2008) Secreted tartrate-resistant acid phosphatase 5b is a marker of osteoclast number in human osteoclast cultures and the rat ovariectomy model. Calcif Tissue Int 82:108–115

    Article  CAS  PubMed  Google Scholar 

  11. Halleen JM, Ylipahkala H, Alatalo SL, Janckila AJ, Heikkinen JE, Suominen H, Cheng S, Vaananen HK (2002) Serum tartrate-resistant acid phosphatase 5b, but not 5a, correlates with other markers of bone turnover and bone mineral density. Calcif Tissue Int 71:20–25

    Article  CAS  PubMed  Google Scholar 

  12. Halleen JM, Alatalo SL, Suominen H, Cheng S, Janckila AJ, Vaananen HK (2000) Tartrate-resistant acid phosphatase 5b: a novel serum marker of bone resorption. J Bone Miner Res 15:1337–1345

    Article  CAS  PubMed  Google Scholar 

  13. Halleen JM, Alatalo SL, Janckila AJ, Woitge HW, Seibel MJ, Vaananen HK (2001) Serum tartrate-resistant acid phosphatase 5b is a specific and sensitive marker of bone resorption. Clin Chem 47:597–600

    CAS  PubMed  Google Scholar 

  14. Adams LM, Warburton MJ, Hayman AR (2007) Human breast cancer cell lines and tissues express tartrate-resistant acid phosphatase (TRAP). Cell Biol Int 31:191–195

    Article  CAS  PubMed  Google Scholar 

  15. Honig A, Rieger L, Kapp M, Krockenberger M, Eck M, Dietl J, Kammerer U (2006) Increased tartrate-resistant acid phosphatase (TRAP) expression in malignant breast, ovarian and melanoma tissue: an investigational study. BMC Cancer 6:199

    Article  CAS  PubMed  Google Scholar 

  16. Chao TY, Yu JC, Ku CH, Chen MM, Lee SH, Janckila AJ, Yam LT (2005) Tartrate-resistant acid phosphatase 5b is a useful serum marker for extensive bone metastasis in breast cancer patients. Clin Cancer Res 11:544–550

    CAS  PubMed  Google Scholar 

  17. Jung K, Lein M, Stephan C, Von Hosslin K, Semjonow A, Sinha P, Loening SA, Schnorr D (2004) Comparison of 10 serum bone turnover markers in prostate carcinoma patients with bone metastatic spread: diagnostic and prognostic implications. Int J Cancer 111:783–791

    Article  CAS  PubMed  Google Scholar 

  18. Lyubimova NV, Pashkov MV, Tyulyandin SA, Gol’dberg VE, Kushlinskii NE (2004) Tartrate-resistant acid phosphatase as a marker of bone metastases in patients with breast cancer and prostate cancer. Bull Exp Biol Med 138:77–79

    CAS  PubMed  Google Scholar 

  19. Mose S, Menzel C, Kurth AA, Obert K, Ramm U, Eberlein K, Boettcher HD, Pichlmeier U (2005) Evaluation of tartrate-resistant acid phosphatase (TRACP) 5b as bone resorption marker in irradiated bone metastases. Anticancer Res 25:4639–4645

    CAS  PubMed  Google Scholar 

  20. Chung YC, Ku CH, Chao TY, Yu JC, Chen MM, Lee SH (2006) Tartrate-resistant acid phosphatase 5b activity is a useful bone marker for monitoring bone metastases in breast cancer patients after treatment. Cancer Epidemiol Biomarkers Prev 15:424–428

    Article  CAS  PubMed  Google Scholar 

  21. Salminen E, Ala-Houhala M, Korpela J, Varpula M, Tiitinen SL, Halleen JM, Vaananen HK (2005) Serum tartrate-resistant acid phosphatase 5b (TRACP 5b) as a marker of skeletal changes in prostate cancer. Acta Oncol 44:742–747

    Article  CAS  PubMed  Google Scholar 

  22. Ek-Rylander B, Barkhem T, Ljusberg J, Ohman L, Andersson KK, Andersson G (1997) Comparative studies of rat recombinant purple acid phosphatase and bone tartrate-resistant acid phosphatase. Biochem J 321(Pt 2):305–311

    CAS  PubMed  Google Scholar 

  23. Lang P, Andersson G (2005) Differential expression of monomeric and proteolytically processed forms of tartrate-resistant acid phosphatase in rat tissues. Cell Mol Life Sci 62:905–918

    Article  CAS  PubMed  Google Scholar 

  24. Wang Y, Norgard M, Andersson G (2005) N-glycosylation influences the latency and catalytic properties of mammalian purple acid phosphatase. Arch Biochem Biophys 435:147–156

    Article  CAS  PubMed  Google Scholar 

  25. Zenger S, Hollberg K, Ljusberg J, Norgard M, Ek-Rylander B, Kiviranta R, Andersson G (2007) Proteolytic processing and polarized secretion of tartrate-resistant acid phosphatase is altered in a subpopulation of metaphyseal osteoclasts in cathepsin K-deficient mice. Bone 41:820–832

    Article  CAS  PubMed  Google Scholar 

  26. Igarashi Y, Lee MY, Matsuzaki S (2001) Heparin column analysis of serum type 5 tartrate-resistant acid phosphatase isoforms. J Chromatogr B Biomed Sci Appl 757:269–276

    Article  CAS  PubMed  Google Scholar 

  27. Wang Y, Andersson G (2007) Expression and proteolytic processing of mammalian purple acid phosphatase in CHO-K1 cells. Arch Biochem Biophys 461:85–94

    Article  CAS  PubMed  Google Scholar 

  28. Zenger S, Ek-Rylander B, Andersson G (2010) Biogenesis of tartrate-resistant acid phosphatase isoforms 5a and 5b in stably transfected MDA-MB-231 breast cancer epithelial cells. Biochim Biophys Acta 1803:598–607

    Article  CAS  PubMed  Google Scholar 

  29. Yam LT, Li CY, Lam KW (1971) Tartrate-resistant acid phosphatase isoenzyme in the reticulum cells of leukemic reticuloendotheliosis. N Engl J Med 284:357–360

    Article  CAS  PubMed  Google Scholar 

  30. Mose S, Menzel C, Kurth AA, Obert K, Breidert I, Borowsky K, Bottcher HD (2003) Tartrate-resistant acid phosphatase 5b as serum marker of bone metabolism in cancer patients. Anticancer Res 23:2783–2788

    CAS  PubMed  Google Scholar 

  31. Terpos E, de la Fuente J, Szydlo R, Hatjiharissi E, Viniou N, Meletis J, Yataganas X, Goldman JM, Rahemtulla A (2003) Tartrate-resistant acid phosphatase isoform 5b: a novel serum marker for monitoring bone disease in multiple myeloma. Int J Cancer 106:455–457

    Article  CAS  PubMed  Google Scholar 

  32. Janckila AJ, Parthasarathy RN, Parthasarathy LK, Seelan RS, Hsueh YC, Rissanen J, Alatalo SL, Halleen JM, Yam LT (2005) Properties and expression of human tartrate-resistant acid phosphatase isoform 5a by monocyte-derived cells. J Leukoc Biol 77:209–218

    Article  CAS  PubMed  Google Scholar 

  33. Venables JP (2004) Aberrant and alternative splicing in cancer. Cancer Res 64:7647–7654

    Article  CAS  PubMed  Google Scholar 

  34. Ek-Rylander B, Bill P, Norgard M, Nilsson S, Andersson G (1991) Cloning, sequence, and developmental expression of a type 5, tartrate-resistant, acid phosphatase of rat bone. J Biol Chem 266:24684–24689

    CAS  PubMed  Google Scholar 

  35. Baumbach GA, Saunders PT, Ketcham CM, Bazer FW, Roberts RM (1991) Uteroferrin contains complex and high mannose-type oligosaccharides when synthesized in vitro. Mol Cell Biochem 105:107–117

    Article  CAS  PubMed  Google Scholar 

  36. Saunders PT, Renegar RH, Raub TJ, Baumbach GA, Atkinson PH, Bazer FW, Roberts RM (1985) The carbohydrate structure of porcine uteroferrin and the role of the high mannose chains in promoting uptake by the reticuloendothelial cells of the fetal liver. J Biol Chem 260:3658–3665

    CAS  PubMed  Google Scholar 

  37. Dube DH, Bertozzi CR (2005) Glycans in cancer and inflammation–potential for therapeutics and diagnostics. Nat Rev Drug Discov 4:477–488

    Article  CAS  PubMed  Google Scholar 

  38. Pollard JW (2009) Trophic macrophages in development and disease. Nat Rev Immunol 9:259–270

    Article  CAS  PubMed  Google Scholar 

  39. Smyth MJ, Crowe NY, Godfrey DI (2001) NK cells and NKT cells collaborate in host protection from methylcholanthrene-induced fibrosarcoma. Int Immunol 13:459–463

    Article  CAS  PubMed  Google Scholar 

  40. Hayakawa Y, Takeda K, Yagita H, Smyth MJ, Van Kaer L, Okumura K, Saiki I (2002) IFN-gamma-mediated inhibition of tumor angiogenesis by natural killer T-cell ligand, alpha-galactosylceramide. Blood 100:1728–1733

    CAS  PubMed  Google Scholar 

  41. Bune AJ, Hayman AR, Evans MJ, Cox TM (2001) Mice lacking tartrate-resistant acid phosphatase (Acp 5) have disordered macrophage inflammatory responses and reduced clearance of the pathogen, Staphylococcus aureus. Immunology 102:103–113

    Article  CAS  PubMed  Google Scholar 

  42. Kong YY, Yoshida H, Sarosi I, Tan HL, Timms E, Capparelli C, Morony S, Oliveira-dos-Santos AJ, Van G, Itie A, Khoo W, Wakeham A, Dunstan CR, Lacey DL, Mak TW, Boyle WJ, Penninger JM (1999) OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature 397:315–323

    Article  CAS  PubMed  Google Scholar 

  43. Wittrant Y, Theoleyre S, Couillaud S, Dunstan C, Heymann D, Redini F (2003) Regulation of osteoclast protease expression by RANKL. Biochem Biophys Res Commun 310:774–778

    Article  CAS  PubMed  Google Scholar 

  44. Jones DH, Nakashima T, Sanchez OH, Kozieradzki I, Komarova SV, Sarosi I, Morony S, Rubin E, Sarao R, Hojilla CV, Komnenovic V, Kong YY, Schreiber M, Dixon SJ, Sims SM, Khokha R, Wada T, Penninger JM (2006) Regulation of cancer cell migration and bone metastasis by RANKL. Nature 440:692–696

    Article  CAS  PubMed  Google Scholar 

  45. Simpson KJ, Selfors LM, Bui J, Reynolds A, Leake D, Khvorova A, Brugge JS (2008) Identification of genes that regulate epithelial cell migration using an siRNA screening approach. Nat Cell Biol 10:1027–1038

    Article  CAS  PubMed  Google Scholar 

  46. Ek-Rylander B, Andersson G (2010) Osteoclast migration on phosphorylated osteopontin is regulated by endogenous tartrate-resistant acid phosphatase. Exp Cell Res 316:443–451

    Article  CAS  PubMed  Google Scholar 

  47. Sung V, Gilles C, Murray A, Clarke R, Aaron AD, Azumi N, Thompson EW (1998) The LCC15-MB human breast cancer cell line expresses osteopontin and exhibits an invasive and metastatic phenotype. Exp Cell Res 241:273–284

    Article  CAS  PubMed  Google Scholar 

  48. Weber GF, Ashkar S, Cantor H (1997) Interaction between CD44 and osteopontin as a potential basis for metastasis formation. Proc Assoc Am Physicians 109:1–9

    CAS  PubMed  Google Scholar 

  49. Christensen B, Kazanecki CC, Petersen TE, Rittling SR, Denhardt DT, Sorensen ES (2007) Cell type-specific post-translational modifications of mouse osteopontin are associated with different adhesive properties. J Biol Chem 282:19463–19472

    Article  CAS  PubMed  Google Scholar 

  50. Weber GF, Zawaideh S, Hikita S, Kumar VA, Cantor H, Ashkar S (2002) Phosphorylation-dependent interaction of osteopontin with its receptors regulates macrophage migration and activation. J Leukoc Biol 72:752–761

    CAS  PubMed  Google Scholar 

  51. Sun P, Sleat DE, Lecocq M, Hayman AR, Jadot M, Lobel P (2008) Acid phosphatase 5 is responsible for removing the mannose 6-phosphate recognition marker from lysosomal proteins. Proc Natl Acad Sci USA 105:16590–16595

    Article  CAS  PubMed  Google Scholar 

  52. Hayman AR, Cox TM (1994) Purple acid phosphatase of the human macrophage and osteoclast. Characterization, molecular properties, and crystallization of the recombinant di-iron-oxo protein secreted by baculovirus-infected insect cells. J Biol Chem 269:1294–1300

    CAS  PubMed  Google Scholar 

  53. Nishikawa M (2008) Reactive oxygen species in tumor metastasis. Cancer Lett 266:53–59

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Jussi Halleen for kindly providing the human recombinant TRAP. This work was supported by grants from the Swedish Research Council, Cancer-Allergy Foundation, Stockholm County Council (ALF) and Karolinska Institutet Research Funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serhan Zenger.

Additional information

Serhan Zenger and Wentao He have contributed equally to the study and should both be considered as first authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10585_2010_9358_MOESM1_ESM.tif

Supplementary Figure 1. Anti-monomeric TRAP immunostaining on primary breast cancer tissue sections gave strong signals in cancer cells in. Magnification ×40. (TIFF 2481 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zenger, S., He, W., Ek-Rylander, B. et al. Differential expression of tartrate-resistant acid phosphatase isoforms 5a and 5b by tumor and stromal cells in human metastatic bone disease. Clin Exp Metastasis 28, 65–73 (2011). https://doi.org/10.1007/s10585-010-9358-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-010-9358-4

Keywords

Navigation