Skip to main content
Log in

Establishment and validation of an in vitro co-culture model to study the interactions between bone and prostate cancer cells

  • Research Paper
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

Bone is the preferred site for prostate cancer (PCa) metastases. Once the tumor has established itself within the bone there is virtually no cure. To better understand the interactions between the PCa cells and bone environment in the metastatic process new model systems are needed. We have established a two-compartment in vitro co-culturing model that can be used to follow the trans-activation of bone and/or tumor cells. The model was validated using two PCa tumor cell lines (PC-3; lytic and LNCaP; mixed/osteoblastic) and one osteolytic inducing factor, 1,25-dihydroxyvitamin D3 (D3). Results were in accordance with the expected bone phenotypes; PC-3 cells and D3 gave osteolytic gene expression profiles in calvariae, with up-regulation of genes needed for osteoclast differentiation, activation and function; Rankl, CathK, Trap and MMP-9, and down-regulation of genes associated with osteoblast differentiation and bone mineralization; Alp, Ocl and Dkk-1. LNCaP cells activated genes in the calvarial bones associated with osteoblast differentiation and mineralization, with marginal effects on osteolytic genes. The results were strengthened by similar changes in protein expression for a selection of the analyzed genes. Furthermore, the osteolytic gene expression profiles in calvarial bones co-cultured with PC-3 cells or with D3 were correlated with the actual ongoing resorptive process, as assessed by the release of collagen fragments from the calvariae. Our results show that the model can be used to follow tumor-induced bone remodeling, and by measuring changes in gene expression in the tumor cells we can also study how they respond to the bone microenvironment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ACTB:

β-Actin

ALP:

Alkaline phosphatase

CATHK:

Cathepsin K

CTX-I:

C-terminal telopeptide fragments of type I collagen

D3:

1,25-Dihydroxyvitamin D3

DKK-1:

Dickkopf-1

ET-1:

Endothelin 1

ETA:

Endothelin receptor A

IGF-1:

Insulin-like growth factor type 1

IGF-R1:

Insulin-like growth factor type 1 receptor

MMP-9:

Matrix metalloproteinase 9

OCL:

Osteocalcin

OPG:

Osteoprotegerin

PCa:

Prostate cancer

PCR:

Polymerase chain reaction

PSA:

Prostate specific antigen

PTHRP:

Parathyroid hormone-related protein

RANK:

Receptor activator of nuclear factor-κB

RANKL:

Receptor activator of nuclear factor-κB ligand

RPL13:

Ribosomal protein L13

TGF-β1:

Transforming growth factor β 1

TRAP:

Tartrate-resistant acid phosphatase

References

  1. Carlin BI, Andriole GL (2000) The natural history, skeletal complications, and management of bone metastases in patients with prostate carcinoma. Cancer 88:2989–2994. doi:10.1002/1097-0142(20000615)88:12+<2989:AID-CNCR14>3.0.CO;2-Q

    Article  CAS  PubMed  Google Scholar 

  2. Pentyala SN, Lee J, Hsieh K et al (2000) Prostate cancer: a comprehensive review. Med Oncol 17:85–105

    Article  CAS  PubMed  Google Scholar 

  3. Mundy GR (2002) Metastasis to bone: causes, consequences and therapeutic opportunities. Nat Rev Cancer 2:584–593. doi:10.1038/nrc867

    Article  CAS  PubMed  Google Scholar 

  4. Robinson VL, Kauffman EC, Sokoloff MH (2004) The basic biology of metastasis. In: Keller ET, Chung LW et al (eds) The biology of skeletal metastases. Kluwer Academic Publishers, Norwell, pp 1–21

    Google Scholar 

  5. Bussard KM, Gay CV, Mastro AM (2008) The bone microenvironment in metastasis; what is special about bone? Cancer Metastasis Rev 27:41–55. doi:10.1007/s10555-007-9109-4

    Article  PubMed  Google Scholar 

  6. Tu S-M, Lin S-H (2004) Clinical aspects of bone metastases in prostate cancer. In: Keller ET, Chung LW (eds) The biology of skeletal metastases. Kluwer Academic Publishers, Norwell, pp 23–46

    Google Scholar 

  7. Lerner UH (2006) Bone remodeling in post-menopausal osteoporosis. J Dent Res 85:584–595

    Article  CAS  PubMed  Google Scholar 

  8. Boyle WJ, Simonet WS, Lacey DL (2003) Osteoclast differentiation and activation. Nature 423:337–342. doi:10.1038/nature01658

    Article  CAS  PubMed  Google Scholar 

  9. Stein GS, Lian JB (1993) Molecular mechanisms mediating proliferation/differentiation interrelationships during progressive development of the osteoblast phenotype. Endocr Rev 14:424–442

    CAS  PubMed  Google Scholar 

  10. van der Horst G, van der Werf SM, Farih-Sips H et al (2005) Downregulation of Wnt signaling by increased expression of Dickkopf-1 and -2 is a prerequisite for late-stage osteoblast differentiation of KS483 cells. J Bone Miner Res 20:1867–1877. doi:10.1359/JBMR.050614

    Article  PubMed  CAS  Google Scholar 

  11. Kearns AE, Khosla S, Kostenuik PJ (2008) Receptor activator of nuclear factor kappaB ligand and osteoprotegerin regulation of bone remodeling in health and disease. Endocr Rev 29:155–192. doi:10.1210/er.2007-0014

    Article  CAS  PubMed  Google Scholar 

  12. Corey E, Quinn JE, Bladou F et al (2002) Establishment and characterization of osseous prostate cancer models: intra-tibial injection of human prostate cancer cells. Prostate 52:20–33. doi:10.1002/pros.10091

    Article  PubMed  Google Scholar 

  13. Thalmann GN, Sikes RA, Wu TT et al (2000) LNCaP progression model of human prostate cancer: androgen-independence and osseous metastasis. Prostate 44:91–103

    Article  CAS  PubMed  Google Scholar 

  14. Teitelbaum SL (2000) Bone resorption by osteoclasts. Science 289:1504–1508

    Article  CAS  PubMed  Google Scholar 

  15. Kaighn ME, Narayan KS, Ohnuki Y et al (1979) Establishment and characterization of a human prostatic carcinoma cell line (PC-3). Invest Urol 17:16–23

    CAS  PubMed  Google Scholar 

  16. Horoszewicz JS, Leong SS, Kawinski E et al (1983) LNCaP model of human prostatic carcinoma. Cancer Res 43:1809–1818

    CAS  PubMed  Google Scholar 

  17. Lerner UH (1987) Modifications of the mouse calvarial technique improve the responsiveness to stimulators of bone resorption. J Bone Miner Res 2:375–383

    Article  CAS  PubMed  Google Scholar 

  18. Barrett JM, Rovedo MA, Tajuddin AM et al (2006) Prostate cancer cells regulate growth and differentiation of bone marrow endothelial cells through TGFbeta and its receptor, TGFbetaRII. Prostate 66:632–650. doi:10.1002/pros.20370

    Article  CAS  PubMed  Google Scholar 

  19. Nyambo R, Cross N, Lippitt J et al (2004) Human bone marrow stromal cells protect prostate cancer cells from TRAIL-induced apoptosis. J Bone Miner Res 19:1712–1721. doi:10.1359/JBMR.040703

    Article  CAS  PubMed  Google Scholar 

  20. Guise TA, Mohammad KS, Clines G et al (2006) Basic mechanisms responsible for osteolytic and osteoblastic bone metastases. Clin Cancer Res 12:6213s–6216s. doi:10.1158/1078-0432.CCR-06-1007

    Article  CAS  PubMed  Google Scholar 

  21. Thomas RJ, Guise TA, Yin JJ et al (1999) Breast cancer cells interact with osteoblasts to support osteoclast formation. Endocrinology 140:4451–4458

    Article  CAS  PubMed  Google Scholar 

  22. Hall CL, Bafico A, Dai J et al (2005) Prostate cancer cells promote osteoblastic bone metastases through Wnts. Cancer Res 65:7554–7560. doi:10.1158/0008-5472.CAN-05-1317

    CAS  PubMed  Google Scholar 

  23. Yin JJ, Selander K, Chirgwin JM et al (1999) TGF-beta signaling blockade inhibits PTHrP secretion by breast cancer cells and bone metastases development. J Clin Invest 103:197–206. doi:10.1172/JCI3523

    Article  CAS  PubMed  Google Scholar 

  24. Wang E, Wang J, Chin E et al (1995) Cellular patterns of insulin-like growth factor system gene expression in murine chondrogenesis and osteogenesis. Endocrinology 136:2741–2751

    Article  CAS  PubMed  Google Scholar 

  25. Linkhart TA, Mohan S, Baylink DJ (1996) Growth factors for bone growth and repair: IGF, TGF beta and BMP. Bone 19:1S–12S

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Swedish Cancer Society (project no. 070604), the Swedish Medical Research Council (project no. 7525), The Royal 80 Year Fund of King Gustav V, the Norwegian Cancer Society, Lions Research Foundation and Umeå University, Sweden.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annika Nordstrand.

Additional information

Annika Nordstrand and Jonas Nilsson contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nordstrand, A., Nilsson, J., Tieva, Å. et al. Establishment and validation of an in vitro co-culture model to study the interactions between bone and prostate cancer cells. Clin Exp Metastasis 26, 945–953 (2009). https://doi.org/10.1007/s10585-009-9285-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-009-9285-4

Keywords

Navigation