Skip to main content

Advertisement

Log in

Deficiencies in the CD40 and CD154 receptor-ligand system reduce experimental lung metastasis

  • Research Paper
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

It is established that experimental metastasis requires platelet activity. CD154 expressed on and released from activated platelets induces an inflammatory response in endothelial cells and monocytes, including tissue factor production. CD154 has also been shown to activate platelets in vitro and promote thrombus stability in vivo. These CD154 effects may be mediated, at least in part, by CD40 signaling on platelets and vascular endothelial cells. We have previously demonstrated prolonged bleeding and PFA-100 closure times in mice deficient for Cd154 or its receptor Cd40. In the present study, we hypothesized that Cd40 and Cd154 promote lung tumor formation in experimental metastasis in mice. We created mice doubly deficient in Cd40 and Cd154 (Dbl KO) and found them to be both fertile and viable. Injected tumor cells seeded poorly in mice deficient in Cd40 or Cd154, as well as Dbl KO, compared to wild-type mice. We sought to determine whether blood-borne Cd40 versus endothelial Cd40 contribute differentially to reduced experimental lung metastasis, as observed in Cd40 deficient mice. By bone marrow transplantation, we created mice deficient for Cd40 either in the blood compartment but not in the endothelium, or vice versa. We found that mice deficient in blood compartment Cd40 had fewer lung nodules compared to wild-type mice and mice deficient in endothelial Cd40. Our findings suggest an important contribution of the Cd40-Cd154 pathway to experimental lung metastasis. Furthermore, the data points to a selective role for peripheral blood cell Cd40 in this process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Axcrona K, Gray D, Leanderson T (1996) Regulation of B cell growth and differentiation via CD21 and CD40. Eur J Immunol 26:2203–2207

    Article  PubMed  CAS  Google Scholar 

  2. Stout RD, Suttles J (1996) The many roles of CD40 in cell-mediated inflammatory responses. Immunol Today 17:487–492

    Article  PubMed  CAS  Google Scholar 

  3. Henn V, Slupsky JR et al (1998) CD40 ligand on activated platelets triggers an inflammatory reaction of endothelial cells. Nature 391:591–594

    Article  PubMed  CAS  Google Scholar 

  4. Inwald DP, McDowall A et al (2003) CD40 is constitutively expressed on platelets and provides a novel mechanism for platelet activation. Circ Res 92:1041–1048

    Article  PubMed  CAS  Google Scholar 

  5. Armitage RJ, Fanslow WC et al (1992) Molecular and biological characterization of a murine ligand for CD40. Nature 357:80–82

    Article  PubMed  CAS  Google Scholar 

  6. Gauchat JF, Aubry JP et al (1993) Human CD40-ligand: molecular cloning, cellular distribution and regulation of expression by factors controlling IgE production. FEBS Lett 315:259–266

    Article  PubMed  CAS  Google Scholar 

  7. Gordon J, Millsum MJ et al (1987) Synergistic interaction between interleukin 4 and anti-Bp50 (CDw40) revealed in a novel B cell restimulation assay. Eur J Immunol 17:1535–1538

    Article  PubMed  CAS  Google Scholar 

  8. Yellin MJ, Winikoff S et al (1995) Ligation of CD40 on fibroblasts induces CD54 (ICAM-1) and CD106 (VCAM-1) up-regulation and IL-6 production and proliferation. J Leukoc Biol 58:209–216

    PubMed  CAS  Google Scholar 

  9. Henn V, Steinbach S et al (2001) The inflammatory action of CD40 ligand (CD154) expressed on activated human platelets is temporally limited by coexpressed CD40. Blood 98:1047–1054

    Article  PubMed  CAS  Google Scholar 

  10. Andre P, Nannizzi-Alaimo L et al (2002) Platelet-derived CD40L: the switch-hitting player of cardiovascular disease. Circulation 106:896–899

    Article  PubMed  Google Scholar 

  11. Langer F, Ingersoll SB et al (2005) The role of CD40 in CD40L- and antibody-mediated platelet activation. Thromb Haemost 93:1137–1146

    PubMed  CAS  Google Scholar 

  12. Prasad KS, Andre P et al (2003) Soluble CD40 ligand induces beta3 integrin tyrosine phosphorylation and triggers platelet activation by outside-in signaling. Proc Natl Acad Sci USA 100:12367–12371

    Article  PubMed  CAS  Google Scholar 

  13. Andre P, Prasad KS et al (2002) CD40L stabilizes arterial thrombi by a beta3 integrin—dependent mechanism. Nat Med 8:247–252

    Article  PubMed  CAS  Google Scholar 

  14. Amirkhosravi A, Amaya M et al (2002) Platelet-CD40 ligand interaction with melanoma cell and monocyte CD40 enhances cellular procoagulant activity. Blood Coagul Fibrinolysis 13:505–512

    Article  PubMed  CAS  Google Scholar 

  15. Langer F, Amirkhosravi A et al (2006) Experimental metastasis and primary tumor growth in mice with hemophilia A. J Thromb Haemost 4:1056–1062

    Article  PubMed  CAS  Google Scholar 

  16. Bennett SR, Carbone FR et al (1998) Help for cytotoxic-T-cell responses is mediated by CD40 signalling. Nature 393:478–480

    Article  PubMed  CAS  Google Scholar 

  17. Ridge JP, Di RF et al (1998) A conditioned dendritic cell can be a temporal bridge between a CD4+ T-helper and a T-killer cell. Nature 393:474–478

    Article  PubMed  CAS  Google Scholar 

  18. Schoenberger SP, Toes RE et al (1998) T-cell help for cytotoxic T lymphocytes is mediated by CD40-CD40L interactions. Nature 393:480–483

    Article  PubMed  CAS  Google Scholar 

  19. French RR, Chan HT et al (1999) CD40 antibody evokes a cytotoxic T-cell response that eradicates lymphoma and bypasses T-cell help. Nat Med 5:548–553

    Article  PubMed  CAS  Google Scholar 

  20. Gurunathan S, Irvine KR et al (1998) CD40 ligand/trimer DNA enhances both humoral and cellular immune responses and induces protective immunity to infectious and tumor challenge. J Immunol 161:4563–4571

    PubMed  CAS  Google Scholar 

  21. Sotomayor EM, Borrello I et al (1999) Conversion of tumor-specific CD4+ T-cell tolerance to T-cell priming through in vivo ligation of CD40. Nat Med 5:780–787

    Article  PubMed  CAS  Google Scholar 

  22. Turner JG, Rakhmilevich AL et al (2001) Anti-CD40 antibody induces antitumor and antimetastatic effects: the role of NK cells. J Immunol 166:89–94

    PubMed  CAS  Google Scholar 

  23. Amirkhosravi A, Meyer T et al (2002) Tissue factor pathway inhibitor reduces experimental lung metastasis of B16 melanoma. Thromb Haemost 87:930–936

    PubMed  CAS  Google Scholar 

  24. Karpatkin S, Pearlstein E et al (1988) Role of adhesive proteins in platelet tumor interaction in vitro and metastasis formation in vivo. J Clin Invest 81:1012–1019

    Article  PubMed  CAS  Google Scholar 

  25. Amirkhosravi A, Mousa SA et al (2003) Inhibition of tumor cell-induced platelet aggregation and lung metastasis by the oral GpIIb/IIIa antagonist XV454. Thromb Haemost 90:549–554

    PubMed  CAS  Google Scholar 

  26. Amirkhosravi A, Meyer T et al (2007) The role of tissue factor pathway inhibitor in tumor growth and metastasis. Semin Thromb Hemost 33:643–652

    Article  PubMed  CAS  Google Scholar 

  27. Donnelly KM, Bromberg ME et al (1998) Ancylostoma caninum anticoagulant peptide blocks metastasis in vivo and inhibits factor Xa binding to melanoma cells in vitro. Thromb Haemost 79:1041–1047

    PubMed  CAS  Google Scholar 

  28. Esumi N, Fan D et al (1991) Inhibition of murine melanoma experimental metastasis by recombinant desulfatohirudin, a highly specific thrombin inhibitor. Cancer Res 51:4549–4556

    PubMed  CAS  Google Scholar 

  29. Fischer EG, Riewald M et al (1999) Tumor cell adhesion and migration supported by interaction of a receptor-protease complex with its inhibitor. J Clin Invest 104:1213–1221

    Article  PubMed  CAS  Google Scholar 

  30. Mueller BM, Reisfeld RA et al (1992) Expression of tissue factor by melanoma cells promotes efficient hematogenous metastasis. Proc Natl Acad Sci USA 89:11832–11836

    Article  PubMed  CAS  Google Scholar 

  31. Mueller BM, Ruf W (1998) Requirement for binding of catalytically active factor VIIa in tissue factor-dependent experimental metastasis. J Clin Invest 101:1372–1378

    Article  PubMed  CAS  Google Scholar 

  32. Amirkhosravi M, Francis JL (1993) Procoagulant activity of the MC28 fibrosarcoma cell line in vitro and in vivo. Br J Haematol 85:736–744

    Article  PubMed  CAS  Google Scholar 

  33. Francis JL, Amirkhosravi A (2002) Effect of antihemostatic agents on experimental tumor dissemination. Semin Thromb Hemost 28:29–38

    Article  PubMed  CAS  Google Scholar 

  34. Fidler IJ (1970) Metastasis: guantitative analysis of distribution and fate of tumor embolilabeled with 125 I-5-iodo-2′-deoxyuridine. J Natl Cancer Inst 45:773–782

    PubMed  CAS  Google Scholar 

  35. Hara Y, Steiner M (1980) Characterization of the platelet-aggregating activity of tumor cells. Cancer Res 40:1217–1222

    PubMed  CAS  Google Scholar 

  36. Kepner N, Lipton A (1981) A mitogenic factor for transformed fibroblasts from human platelets. Cancer Res 41:430–432

    PubMed  CAS  Google Scholar 

  37. Li JJ, Huang YQ (2001) Thrombin induces the release of angiopoietin-1 from platelets. Thromb Haemost 85:204–206

    PubMed  CAS  Google Scholar 

  38. Mohle R, Green D (1997) Constitutive production and thrombin-induced release of vascular endothelial growth factor by human megakaryocytes and platelets. Proc Natl Acad Sci USA 94:663–668

    Article  PubMed  CAS  Google Scholar 

  39. Leveille C, Bouillon M (2007) CD40 ligand binds to alpha5beta1 integrin and triggers cell signaling. J Biol Chem 282:5143–5151

    Article  PubMed  CAS  Google Scholar 

  40. Brodeur SR, Angelini F (2003) C4b-binding protein (C4BP) activates B cells through the CD40 receptor. Immunity 18:837–848

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was funded by the Florida Hospital Gala Endowed Program for Oncologic Research. We thank Robert Banks at the University of Central Florida Animal Facility for his excellent technical help. We thank the Radiation Oncology Department at Florida Hospital for their assistance with this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan Blaydes Ingersoll.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ingersoll, S.B., Langer, F., Walker, J.M. et al. Deficiencies in the CD40 and CD154 receptor-ligand system reduce experimental lung metastasis. Clin Exp Metastasis 26, 829–837 (2009). https://doi.org/10.1007/s10585-009-9282-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-009-9282-7

Keywords

Navigation