Skip to main content

Advertisement

Log in

A molecular signature for Epithelial to Mesenchymal transition in a human colon cancer cell system is revealed by large-scale microarray analysis

  • Research Paper
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

Sporadic colorectal cancer is a major cause of death worldwide. Development takes place in a sequential manner from benign adenomas leading to carcinomas. In 90% of tumours bearing a Ras mutation it is Ki-Ras that is mutated. We have developed a model cell system to study oncogenic Ras mutations in colorectal cancer cell lines. In this analysis two Caco-2 derived cell lines expressing Ha-RasV12 (Caco-H) and Ki-RasV12 (Caco-K), respectively, have been used in large-scale microarray profiling against a Caco-2 control. This was carried out using an Illumina microarray containing 24,000 genes. Genes have been identified as differentially expressed in each isoform as well as commonly regulated. In addition the Caco-H cell line has a strong epithelial–mesenchymal phenotype that is reflected in many of its differentially expressed genes. These include the known EMT markers Vimentin, E-cadherin and Slug. Other genes of interest include several members of the Claudin family, Forkhead transcription factors and GATA-factors. The Caco-K cell line shows strong downregulation of the Dickkopf transcriptional repressor implicating it in WNT signalling. Pathway and functional analysis has also been carried out for the differentially expressed genes for both cell lines using Ingenuity software. This genome wide microarray analysis has provided a molecular signature for EMT in a Caco-H colon cancer cell line. It has also revealed a number of key genes for Caco-K expression and identified novel markers for Ras expression that have been verified by PCR analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Fearon ER, Vogelstein B (1990) A genetic model for colorectal tumorigenesis. Cell 61:759–767. doi:10.1016/0092-8674(90)90186-I

    Article  PubMed  CAS  Google Scholar 

  2. Senda T, Iizuka-Kogo A, Onouchi T, Shimomura A (2007) Adenomatous polyposis coli (APC) plays multiple roles in the intestinal and colorectal epithelia. Med Mol Morphol 40:68–81. doi:10.1007/s00795-006-0352-5

    Article  PubMed  Google Scholar 

  3. Janssen KP, Alberici P, Fsihi H, Gaspar C, Breukel C, Franken P, Rosty C, Abal M, El Marjou F, Smits R, Louvard D, Fodde R, Robine S (2006) APC and oncogenic KRAS are synergistic in enhancing Wnt signaling in intestinal tumor formation and progression. Gastroenterology 131:1096–1109. doi:10.1053/j.gastro.2006.08.011

    Article  PubMed  CAS  Google Scholar 

  4. Roberts PJ, Der CJ (2007) Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene 26:3291–3310. doi:10.1038/sj.onc.1210422

    Article  PubMed  CAS  Google Scholar 

  5. Joyce T, Pintzas A (2007) Microarray analysis to reveal genes involved in colon carcinogenesis. Expert Opin Pharmacother 8:895–900. doi:10.1517/14656566.8.7.895

    Article  PubMed  CAS  Google Scholar 

  6. Hegde P, Qi R, Gaspard R, Abernathy K, Dharap S, Earle-Hughes J, Gay C, Nwokekeh NU, Chen T, Saeed AI, Sharov V, Lee NH, Yeatman TJ, Quackenbush J (2001) Identification of tumor markers in models of human colorectal cancer using a 19, 200-element complementary DNA microarray. Cancer Res 61:7792–7797

    PubMed  CAS  Google Scholar 

  7. Seiden-Long IM, Brown KR, Shih W, Wigle DA, Radulovich N, Jurisica I, Tsao MS (2006) Transcriptional targets of hepatocyte growth factor signaling and Ki-ras oncogene activation in colorectal cancer. Oncogene 25:91–102

    PubMed  CAS  Google Scholar 

  8. Ganter B, Giroux CN (2008) Emerging applications of network and pathway analysis in drug discovery and development. Curr Opin Drug Discov Devel 11:86–94

    PubMed  CAS  Google Scholar 

  9. Nishizuka S, Chen ST, Gwadry FG, Alexander J, Major SM, Scherf U, Reinhold WC, Waltham M, Charboneu L, Young L, Bussey KJ, Kim S, Lababidi S, Lee JK, Pittaluga S, Scudiero DA, Susville EA, Munson PJ, Petricoin EFIII, Liotta LA, Hewitt SM, Raffeld M, Weinstein JN (2003) Diagnostic markers that distinguish colon and ovarian adenocarcinomas: identification by genomic, proteomic, and tissue array profiling. Cancer Res 63:5243–5250

    PubMed  CAS  Google Scholar 

  10. Resnick MB, Routhier J, Konkin T, Sabo E, Pricolo VE (2004) Epidermal growth factor receptor, c-MET, beta-catenin, and p53 expression as prognostic indicators in stage II colon cancer: a tissue microarray study. Clin Cancer Res 10:3069–3075. doi:10.1158/1078-0432.CCR-03-0462

    Article  PubMed  CAS  Google Scholar 

  11. Roberts ML, Drosopoulos KG, Vasileiou I, Stricker M, Taoufik E, Maercker C, Guialis A, Alexis MN, Pintzas A (2006) Microarray analysis of the differential transformation mediated by Kirsten and Harvey Ras oncogenes in a human colorectal adenocarcinoma cell line. Int J Cancer 118:616–627. doi:10.1002/ijc.21386

    Article  PubMed  CAS  Google Scholar 

  12. Apolloni A, Prior IA, Lindsay M, Parton RG, Hancock JF (2000) H-ras but not K-ras traffics to the plasma membrane through the exocytic pathway. Mol Cell Biol 20:2475–2487. doi:10.1128/MCB.20.7.2475-2487.2000

    Article  PubMed  CAS  Google Scholar 

  13. Takayama T, Miyanishi K, Hayashi T, Sato Y, Niitsu Y (2006) Colorectal cancer: genetics of development and metastasis. J Gastroenterol 41:185–192. doi:10.1007/s00535-006-1801-6

    Article  PubMed  CAS  Google Scholar 

  14. Conlin A, Smith G, Carey FA, Wolf CR, Steele RJ (2005) The prognostic significance of K-ras, p53, and APC mutations in colorectal carcinoma. Gut 54:1283–1286. doi:10.1136/gut.2005.066514

    Article  PubMed  CAS  Google Scholar 

  15. Conacci-Sorrell M, Simcha I, Ben-Yedidia T, Blechman J, Savagner P, Ben-Ze’ev A (2003) Autoregulation of E-cadherin expression by cadherin-cadherin interactions: the roles of beta-catenin signaling, Slug, and MAPK. J Cell Biol 163:847–857. doi:10.1083/jcb.200308162

    Article  PubMed  CAS  Google Scholar 

  16. Wang Z, Wade P, Mandell KJ, Akyildiz A, Parkos CA, Mrsny RJ, Nusrat A (2007) Raf 1 represses expression of the tight junction protein occludin via activation of the zinc-finger transcription factor slug. Oncogene 26:1222–1230. doi:10.1038/sj.onc.1209902

    Article  PubMed  CAS  Google Scholar 

  17. Whiteman EL, Liu CJ, Fearon ER, Margolis B (2008) The transcription factor snail represses Crumbs3 expression and disrupts apico-basal polarity complexes. Oncogene 27:3875–3879. doi:10.1038/onc.2008.9

    Article  PubMed  CAS  Google Scholar 

  18. Shioiri M, Shida T, Koda K, Oda K, Seike K, Nishimura M, Takano S, Miyazaki M (2006) Slug expression is an independent prognostic parameter for poor survival in colorectal carcinoma patients. Br J Cancer 94:1816–1822. doi:10.1038/sj.bjc.6603193

    Article  PubMed  CAS  Google Scholar 

  19. Peinado H, Olmeda D, Cano A (2007) Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype? Nat Rev Cancer 7:415–428. doi:10.1038/nrc2131

    Article  PubMed  CAS  Google Scholar 

  20. Aigner K, Dampier B, Descovich L, Mikula M, Sultan A, Schreiber M, Mikulits W, Brabletz T, Strand D, Obrist P, Sommergruber W, Schweifer N, Wernitznig A, Beug H, Foisner R, Eger A (2007) The transcription factor ZEB1 (deltaEF1) promotes tumour cell dedifferentiation by repressing master regulators of epithelial polarity. Oncogene 26:6979–6988. doi:10.1038/sj.onc.1210508

    Article  PubMed  CAS  Google Scholar 

  21. Martinez-Estrada OM, Culleres A, Soriano FX, Peinado H, Bolos V, Martinez FO, Reina M, Cano A, Fabre M, Vilaró S (2006) The transcription factors Slug and Snail act as repressors of Claudin-1 expression in epithelial cells. Biochem J 394:449–457. doi:10.1042/BJ20050591

    Article  PubMed  CAS  Google Scholar 

  22. Hewitt KJ, Agarwal R, Morin PJ (2006) The claudin gene family: expression in normal and neoplastic tissues. BMC Cancer 6:186–194. doi:10.1186/1471-2407-6-186

    Article  PubMed  Google Scholar 

  23. McInroy L, Maatta A (2007) Down-regulation of vimentin expression inhibits carcinoma cell migration and adhesion. Biochem Biophys Res Commun 360:109–114. doi:10.1016/j.bbrc.2007.06.036

    Article  PubMed  CAS  Google Scholar 

  24. Andreolas C, Kalogeropoulou M, Voulgari A, Pintzas A (2008) Fra-1 regulates vimentin during Ha-RAS-induced epithelial mesenchymal transition in human colon carcinoma cells. Int J Cancer 122:1745–1756. doi:10.1002/ijc.23309

    Article  PubMed  CAS  Google Scholar 

  25. Lee JM, Dedhar S, Kalluri R, Thompson EW (2006) The epithelial-mesenchymal transition: new insights in signaling, development, and disease. J Cell Biol 172:973–981. doi:10.1083/jcb.200601018

    Article  PubMed  CAS  Google Scholar 

  26. Song J (2007) EMT or apoptosis: a decision for TGF-beta. Cell Res 17:289–290. doi:10.1038/cr.2007.25

    Article  PubMed  CAS  Google Scholar 

  27. Becker KF, Rosivatz E, Blechschmidt K, Kremmer E, Sarbia M, Hofler H (2007) Analysis of the E-cadherin repressor Snail in primary human cancers. Cells Tissues Organs 185:204–212. doi:10.1159/000101321

    Article  PubMed  CAS  Google Scholar 

  28. Huber MA, Kraut N, Beug H (2005) Molecular requirements for epithelial-mesenchymal transition during tumour progression. Curr Opin Cell Biol 17:548–558. doi:10.1016/j.ceb.2005.08.001

    Article  PubMed  CAS  Google Scholar 

  29. Hajra KM, Chen DY, Fearon ER (2002) The SLUG zinc-finger protein represses E-cadherin in breast cancer. Cancer Res 62:1613–1618

    PubMed  CAS  Google Scholar 

  30. Martin TA, Goyal A, Watkins G, Jiang WG (2005) Expression of the transcription factors snail, slug, and twist and their clinical significance in human breast cancer. Ann Surg Oncol 12:488–496. doi:10.1245/ASO.2005.04.010

    Article  PubMed  Google Scholar 

  31. Pishvaian MJ, Feltes CM, Thompson P, Bussemakers MJ, Schalken JA, Byers SW (1999) Cadherin-11 is expressed in invasive breast cancer cell lines. Cancer Res 59:947–952

    PubMed  CAS  Google Scholar 

  32. Shih JY, Tsai MF, Chang TH, Chang YL, Yuan A, Yu CJ, Lin SB, Liou GY, Lee ML, Chen JJ, Hong TM, Yang SC, Su JL, Lee YC, Yang PC (2005) Transcription repressor slug promotes carcinoma invasion and predicts outcome of patients with lung adenocarcinoma. Clin Cancer Res 11:8070–8078. doi:10.1158/1078-0432.CCR-05-0687

    Article  PubMed  CAS  Google Scholar 

  33. Schmidt CR, Gi YJ, Patel TA, Coffey RJ, Beauchamp RD, Pearson AS (2005) E-cadherin is regulated by the transcriptional repressor SLUG during Ras-mediated transformation of intestinal epithelial cells. Surgery 138:306–312. doi:10.1016/j.surg.2005.06.007

    Article  PubMed  Google Scholar 

  34. Comijn J, Berx G, Vermassen P, Verschueren K, van Grunsven L, Bruyneel E, Mareel M, Huylebroeck D, van Roy F (2001) The two-handed E box binding zinc finger protein SIP1 downregulates E-cadherin and induces invasion. Mol Cell 7:1267–1278. doi:10.1016/S1097-2765(01)00260-X

    Article  PubMed  CAS  Google Scholar 

  35. Perez-Moreno MA, Locascio A, Rodrigo I, Dhondt G, Portillo F, Nieto MA, Cano A (2001) A new role for E12/E47 in the repression of E-cadherin expression and epithelial-mesenchymal transitions. J Biol Chem 276:27424–27431. doi:10.1074/jbc.M100827200

    Article  PubMed  CAS  Google Scholar 

  36. Eger A, Aigner K, Sonderegger S, Dampier B, Oehler S, Schreiber M, Berx G, Cano A, Beug H, Foisner R (2005) DeltaEF1 is a transcriptional repressor of E-cadherin and regulates epithelial plasticity in breast cancer cells. Oncogene 24:2375–2385. doi:10.1038/sj.onc.1208429

    Article  PubMed  CAS  Google Scholar 

  37. Mermelshtein A, Gerson A, Walfisch S, Delgado B, Shechter-Maor G, Delgado J, Fich A, Gheber L (2005) Expression of D-type cyclins in colon cancer and in cell lines from colon carcinomas. Br J Cancer 93:338–345. doi:10.1038/sj.bjc.6602709

    Article  PubMed  CAS  Google Scholar 

  38. Mason JM, Morrison DJ, Basson MA, Licht JD (2006) Sprouty proteins: multifaceted negative-feedback regulators of receptor tyrosine kinase signaling. Trends Cell Biol 16:45–54. doi:10.1016/j.tcb.2005.11.004

    Article  PubMed  CAS  Google Scholar 

  39. Hilska M, Roberts PJ, Collan YU, Laine VJ, Kossi J, Hirsimaki P, Rahkonen O, Laato M (2007) Prognostic significance of matrix metalloproteinases-1, -2, -7 and -13 and tissue inhibitors of metalloproteinases-1, -2, -3 and -4 in colorectal cancer. Int J Cancer 121:714–723. doi:10.1002/ijc.22747

    Article  PubMed  CAS  Google Scholar 

  40. Katoh M, Katoh M (2007) Conserved POU/OCT- and GATA-binding sites in 5′-flanking promoter region of mammalian WNT8B orthologs. Int J Oncol 30:1273–1277

    PubMed  CAS  Google Scholar 

  41. Katoh M, Katoh M (2004) Human FOX gene family. Int J Oncol 25:1495–1500 Review

    PubMed  CAS  Google Scholar 

  42. Turksen K, Troy TC (2001) Claudin-6: a novel tight junction molecule is developmentally regulated in mouse embryonic epithelium. Dev Dyn 222:292–300. doi:10.1002/dvdy.1174

    Article  PubMed  CAS  Google Scholar 

  43. Lee AY, He B, You L, Xu Z, Mazieres J, Reguart N, Mikami I, Batra S, Jablons DM (2004) Dickkopf-1 antagonizes Wnt signaling independent of beta-catenin in human mesothelioma. Biochem Biophys Res Commun 323:1246–1250. doi:10.1016/j.bbrc.2004.09.001

    Article  PubMed  CAS  Google Scholar 

  44. Mikheev AM, Mikheeva SA, Liu B, Cohen P, Zarbl H (2004) A functional genomics approach for the identification of putative tumor suppressor genes: Dickkopf-1 as suppressor of HeLa cell transformation. Carcinogenesis 25:47–59. doi:10.1093/carcin/bgg190

    Article  PubMed  CAS  Google Scholar 

  45. Aguilera O, Fraga MF, Ballestar E, Paz MF, Herranz M, Espada J, Garcia JM, Munoz A, Esteller M, Gonzalez-Sancho JM (2004) Epigenetic inactivation of the Wnt antagonist DICKKOPF-1 (DKK-1) gene in human colorectal cancer. Oncogene 2006(25):4116–4121

    Google Scholar 

  46. Sato H, Suzuki H, Toyota M, Nojima M, Maruyama R, Sasaki S, Takagi H, Sogabe Y, Sasaki Y, Idogawa M, Sonoda T, Mori M, Imai K, Tokino T, Shinomura Y (2007) Frequent epigenetic inactivation of DICKKOPF family genes in human gastrointestinal tumors. Carcinogenesis 28:2459–2466. doi:10.1093/carcin/bgm178

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

T. J. is a Marie Curie Fellow supported by grants MTKD-CT-2004-509836 “MACROGENEX” and MRTN-CT-2004-504228 “TAF-Chromatin” to A. P.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Pintzas.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOC 2,802 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Joyce, T., Cantarella, D., Isella, C. et al. A molecular signature for Epithelial to Mesenchymal transition in a human colon cancer cell system is revealed by large-scale microarray analysis. Clin Exp Metastasis 26, 569–587 (2009). https://doi.org/10.1007/s10585-009-9256-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-009-9256-9

Keywords

Navigation