Skip to main content

Advertisement

Log in

Imaging cancer dynamics in vivo at the tumor and cellular level with fluorescent proteins

  • Research Paper
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

Whole-body imaging with fluorescent proteins has been shown to be a powerful technology to follow the dynamics of metastatic cancer. Whole-body imaging of fluorescent protein-expressing-cancer cells enables the facile determination of efficacy of candidate anti-tumor and anti-metastatic agents in mouse models. GFP-expressing transgenic mice transplanted with the RFP-expressing cancer cells enable the distinction of cancer and host cells and the efficacy of drugs on each type of cell. This is particularly useful for imaging tumor angiogenesis. Cancer-cell trafficking through the cardiovascular and lymphatic systems is the critical means of spread of cancer. The use of fluorescent proteins to differentially label cancer calls in the nucleus and cytoplasm and high-powered imaging technology are used to visualize the nuclear-cytoplasmic dynamics of cancer-cell trafficking in both blood vessels and lymphatic vessels in the live animal. This technology has furthered our understanding of the spread of cancer at the subcellular level in the live mouse. Fluorescent proteins thus enable both macro and micro imaging technology and thereby provide the basis for the new field of in vivo cell biology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Prasher DC, Eckenrode VK, Ward WW et al (1992) Primary structure of the Aequorea victoria green-fluorescent protein. Gene 111:229–233

    Article  PubMed  CAS  Google Scholar 

  2. Chalfie M, Tu Y, Euskirchen G et al (1994) Green fluorescent protein as a marker for gene expression. Science 263:802–805

    Article  PubMed  CAS  Google Scholar 

  3. Cheng L, Fu J, Tsukamoto A, Hawley RG (1996) Use of green fluorescent protein variants to monitor gene transfer and expression in mammalian cells. Nat Biotechnol 14:606–609

    Article  PubMed  CAS  Google Scholar 

  4. Cody CW, Prasher DC, Westler WM et al (1993) Chemical structure of the hexapeptide chromophore of the Aequorea green fluorescent protein. Biochemistry 32:1212–1218

    Article  PubMed  CAS  Google Scholar 

  5. Yang F, Moss LG, Phillips GN Jr (1996) The molecular structure of green fluorescent protein. Nat Biotechnol 14:1246–1251

    Article  PubMed  CAS  Google Scholar 

  6. Morin J, Hastings J (1971) Energy transfer in a bioluminescent system. J Cell Physiol 77:313–318

    Article  PubMed  CAS  Google Scholar 

  7. Cormack B, Valdivia R, Falkow S (1996) FACS-optimized mutants of the green fluorescent protein (GFP). Gene 173:33–38

    Article  PubMed  CAS  Google Scholar 

  8. Crameri A, Whitehorn EA, Tate E, Stemmer WP (1996) Improved green fluorescent protein by molecular evolution using DNA shuffling. Nat Biotechnol 14:315–319

    Article  PubMed  CAS  Google Scholar 

  9. Delagrave S, Hawtin RE, Silva CM et al (1995) Red-shifted excitation mutants of the green fluorescent protein. Biotechnology 13:151–154

    Article  PubMed  CAS  Google Scholar 

  10. Heim R, Cubitt AB, Tsien RY (1995) Improved green fluorescence. Nature 373:663–664

    Article  PubMed  CAS  Google Scholar 

  11. Zolotukhin S, Potter M, Hauswirth WW et al (1996) A ‘humanized’ green fluorescent protein cDNA adapted for high-level expression in mammalian cells. J Virol 70:4646–4654

    PubMed  CAS  Google Scholar 

  12. Gross LA, Baird GS, Hoffman RC et al (2000) The structure of the chromophore within DsRed, a red fluorescent protein from coral. Proc Natl Acad Sci USA 97:11990–11995

    Article  PubMed  CAS  Google Scholar 

  13. Fradkov AF, Chen Y, Ding L et al (2000) Novel fluorescent protein from Discosoma coral and its mutants possesses a unique far-red fluorescence. FEBS Lett 479:127–130

    Article  PubMed  CAS  Google Scholar 

  14. Matz MV, Fradkov AF, Labas YA et al (1999) Fluorescent proteins from nonbioluminescent Anthozoa species. Nat Biotechnol 17:969–973

    Article  PubMed  CAS  Google Scholar 

  15. Katz MH, Takimoto S, Spivak D et al (2003) A novel red fluorescent protein orthotopic pancreatic cancer model for the preclinical evaluation of chemotherapeutics. J Surg Res 113:151–160

    Article  PubMed  CAS  Google Scholar 

  16. Yang M, Li L, Jiang P et al (2003) Dual-color fluorescence imaging distinguishes tumor cells from induced host angiogenic vessels and stromal cells. Proc Natl Acad Sci USA 100:14259–14262

    Article  PubMed  CAS  Google Scholar 

  17. Shaner NC, Campbell RE, Steinbach PA et al (2004) Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat Biotechnol 22:1567–1572

    Article  PubMed  CAS  Google Scholar 

  18. Shcherbo D, Merzlyak EM, Chepurnykh TV et al (2007) Bright far-red fluorescent protein for whole-body imaging. Nat Methods 4:741–746

    Article  PubMed  CAS  Google Scholar 

  19. Okabe M, Ikawa M, Kominami K et al (1997) ‘Green mice’ as a source of ubiquitous green cells. FEBS Lett 407:313–319

    Article  PubMed  CAS  Google Scholar 

  20. Yang M, Reynoso J, Jiang P et al (2004) Transgenic nude mouse with ubiquitous green fluorescent protein expression as a host for human tumors. Cancer Res 64:8651–8656

    Article  PubMed  CAS  Google Scholar 

  21. Vintersten K, Monetti C, Gertsenstein M et al (2004) Mouse in red: red fluorescent protein expression in mouse ES cells, embryos, and adult animals. Genesis 40:241–246

    Article  PubMed  CAS  Google Scholar 

  22. Hoffman RM (2008) A better fluorescent protein for whole-body imaging. Trends Biotechnol 26:1–4

    Article  PubMed  CAS  Google Scholar 

  23. Hoffman RM (2008) Imaging in mice with fluorescent proteins: from macro to subcellular. Sensors 8:1157–1173

    Article  CAS  Google Scholar 

  24. Chishima T, Miyagi Y, Wang X et al (1997) Cancer invasion and micrometastasis visualized in live tissue by green fluorescent protein expression. Cancer Res 57:2042–2047

    PubMed  CAS  Google Scholar 

  25. Yang M, Baranov E, Jiang P et al (2000) Whole-body optical imaging of green fluorescent protein-expressing tumors and metastases. Proc Natl Acad Sci USA 97:1206–1211

    Article  PubMed  CAS  Google Scholar 

  26. Yang M, Luiken G, Baranov E et al (2005) Facile whole-body imaging of internal fluorescent tumors in mice with an LED flashlight. Biotechniques 39:170–172

    Article  PubMed  CAS  Google Scholar 

  27. Hoffman RM (2005) The multiple uses of fluorescent proteins to visualize cancer in vivo. Nat Rev Cancer 5:796–806

    Article  PubMed  CAS  Google Scholar 

  28. Yamamoto N, Jiang P, Yang M et al (2004) Cellular dynamics visualized in live cells in vitro and in vivo by differential dual-color nuclear-cytoplasmic fluorescent-protein expression. Cancer Res 64:4251–4256

    Article  PubMed  CAS  Google Scholar 

  29. Yang M, Jiang P, Hoffman RM (2007) Whole-body subcellular multicolor imaging of tumor-host interaction and drug response in real time. Cancer Res 67:5195–5200

    Article  PubMed  CAS  Google Scholar 

  30. Karnoub AE, Dash AB, Vo AP et al (2007) Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature 449:557–563

    Article  PubMed  CAS  Google Scholar 

  31. Naumov GN, Wilson SM, MacDonald IC et al (1999) Cellular expression of green fluorescent protein, coupled with high-resolution in vivo videomicroscopy, to monitor steps in tumor metastasis. J Cell Sci 112:1835–1842

    PubMed  CAS  Google Scholar 

  32. Farina KL, Wyckoff JB, Rivera J et al (1998) Cell motility of tumor cells visualized in living intact primary tumors using green fluorescent protein. Cancer Res 58:2528–2532

    PubMed  CAS  Google Scholar 

  33. Condeelis J, Segall JE (2003) Intravital imaging of cell movement in tumors. Nature Rev Cancer 3:921–930

    Article  CAS  Google Scholar 

  34. Wyckoff JB, Wang Y, Lin EY et al (2007) Direct visualization of macrophage-assisted tumor cell intravasation in mammary tumors. Cancer Res 67:2649–2656

    Article  PubMed  CAS  Google Scholar 

  35. Amoh Y, Li L, Yang M et al (2004) Nascent blood vessels in the skin arise from nestin-expressing hair follicle cells. Proc Natl Acad Sci USA 101:13291–13295

    Article  PubMed  CAS  Google Scholar 

  36. Amoh Y, Li L, Yang M et al (2005) Hair-follicle-derived blood vessels vascularize tumors in skin and are inhibited by doxorubicin. Cancer Res 65:2337–2343

    Article  PubMed  CAS  Google Scholar 

  37. Brown EB, Campbell RB, Tsuzuki Y et al (2001) In vivo measurement of gene expression, angiogenesis and physicological function in tumors using multiphoton laser scanning microscopy. Nat Med 7:864–868

    Article  PubMed  CAS  Google Scholar 

  38. Denk W, Strickler JH, Webb WW (1990) Two-photon laser scanning fluorescence microscopy. Science 248:73–76

    Article  PubMed  CAS  Google Scholar 

  39. Fukumura D, Yuan F, Monsky WL et al (1997) Effect of host microenvironment on the microcirculation of human colon adenocarcinoma. Am J Pathol 151:679–688

    PubMed  CAS  Google Scholar 

  40. Fukumura D, Xavier R, Sugiura T et al (1998) Tumor induction of VEGF promoter activity in stromal cells. Cell 94:715–725

    Article  PubMed  CAS  Google Scholar 

  41. Huang MS, Wang TJ, Liang CL et al (2002) Establishment of fluorescent lung carcinoma metastasis model and its real-time microscopic detection in SCID mice. Clin Exp Metastasis 19:359–368

    Article  PubMed  CAS  Google Scholar 

  42. Wyckoff JB, Jones JG, Condeelis JS, Segall JE (2000) A critical step in metastasis: in vivo analysis of intravasation at the primary tumor. Cancer Res 60:2504–2511

    PubMed  CAS  Google Scholar 

  43. Chambers AF, Groom AC, MacDonald IC (2002) Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer 2:563–572

    Article  PubMed  CAS  Google Scholar 

  44. Yamauchi K, Yang M, Jiang P et al (2005) Real-time in vivo dual-color imaging of intracapillary cancer cell and nucleus deformation and migration. Cancer Res 65:4246–4252

    Article  PubMed  CAS  Google Scholar 

  45. Yamauchi K, Yang M, Jiang P et al (2006) Development of real-time subcellular dynamic multicolor imaging of cancer cell trafficking in live mice with a variable-magnification whole-mouse imaging system. Cancer Res 66:4208–4214

    Article  PubMed  CAS  Google Scholar 

  46. Nathanson SD (2003) Insights into the mechanisms of lymph node metastasis. Cancer 98:413–423

    Article  PubMed  Google Scholar 

  47. Hoshida T, Isaka N, Hagendoorn J et al (2006) Imaging steps of lymphatic metastasis reveals that vascular endothelial growth factor-C increases metastasis by increasing delivery of cancer cells to lymph nodes: therapeutic implications. Cancer Res 66:8065–8075

    Article  PubMed  CAS  Google Scholar 

  48. Padera TP, Kadambi A, di Tomaso E et al (2002) Lymphatic metastasis in the absence of functional intratumor lymphatics. Science 296:1883–1886

    Article  PubMed  CAS  Google Scholar 

  49. Gunn MD, Kyuwa S, Tam C et al (1999) Mice lacking expression of secondary lymphoid organ chemokine have defects in lymphocyte homing and dendritic cell localization. J Exp Med 189:451–460

    Article  PubMed  CAS  Google Scholar 

  50. Hayashi K, Jiang P, Yamauchi K et al (2007) Real-time imaging of tumor-cell shedding and trafficking in lymphatic channels. Cancer Res 67:8223–8228

    Article  PubMed  CAS  Google Scholar 

  51. Yamamoto N, Yang M, Jiang P et al (2003) Determination of clonality of metastasis by cell-specific color-coded fluorescent-protein imaging. Cancer Res 63:7785–7790

    PubMed  CAS  Google Scholar 

  52. Glinskii AB, Smith BA, Jiang P et al (2003) Viable circulating metastatic cells produced in orthotopic but not ectopic prostate cancer models. Cancer Res 63:4239–4243

    PubMed  CAS  Google Scholar 

  53. Berezovskaya O, Schimmer AD, Glinskii AB et al (2005) Increased expression of apoptosis inhibitor protein XIAP contributes to anoikis resistance of circulating human prostate cancer metastasis precursor cells. Cancer Res 65:2378–2386

    Article  PubMed  CAS  Google Scholar 

  54. Glinsky GV, Glinskii AB, Berezovskaya O et al (2006) Dual-color-coded imaging of viable circulating prostate carcinoma cells reveals genetic exchange between tumor cells in vivo, contributing to highly metastatic phenotypes. Cell Cycle 5:191–197

    PubMed  CAS  Google Scholar 

  55. Goldberg SF, Harms JF, Quon K et al (1999) Metastasis-suppressed C8161 melanoma cells arrest in lung but fail to proliferate. Clin Exp Metastasis 17:601–607

    Article  PubMed  CAS  Google Scholar 

  56. Goodison S, Kawai K, Hihara J et al (2003) Prolonged dormancy and site-specific growth potential of cancer cells spontaneously disseminated from non-metastatic breast tumors revealed by labeling with green fluorescent protein. Clin Cancer Res 9:3808–3814

    PubMed  CAS  Google Scholar 

  57. Katz MH, Bouvet M, Takimoto S et al (2003) Selective antimetastatic activity of cytosine analog CS-682 in a red fluorescent protein orthotopic model of pancreatic cancer. Cancer Res 63:5521–5525

    PubMed  CAS  Google Scholar 

  58. Katz MH, Bouvet M, Takimoto S et al (2004) Survival efficacy of adjuvant cytosine-analogue CS-682 in a fluorescent orthotopic model of human pancreatic cancer. Cancer Res 64:1828–1833

    Article  PubMed  CAS  Google Scholar 

  59. Schmitt CA, Fridman JS, Yang M et al (2002) Dissecting p53 tumor suppressor functions in vivo. Cancer Cell 1:289–298

    Article  PubMed  CAS  Google Scholar 

  60. Schmitt CA, Fridman JS, Yang M et al (2002) Senescence program controlled by p53 and p16INK4a contributes to the outcome of cancer therapy. Cell 109:335–346

    Article  PubMed  CAS  Google Scholar 

  61. Ewald AJ, Brenot A, Duong M et al (2008) Collective epithelial migration and cell rearrangements drive mammary branching morphogenesis. Dev Cell 14:570–581

    Article  PubMed  CAS  Google Scholar 

  62. Sakaue-Sawano A, Kurokawa H, Morimura T et al (2008) Visualizing spatiotemporal dynamics of multicellular cell-cycle progression. Cell 132:487–498

    Article  PubMed  CAS  Google Scholar 

  63. Livet J, Weissman TA, Kang H et al (2007) Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system. Nature 450:56–62

    Article  PubMed  CAS  Google Scholar 

  64. Zhao H, Doyle TC, Coquoz O et al (2005) Emission spectra of bioluminescent reporters and interaction with mammalian tissue determine the sensitivity of detection in vivo. J Biomed Opt 10(4):41210

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert M. Hoffman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoffman, R.M. Imaging cancer dynamics in vivo at the tumor and cellular level with fluorescent proteins. Clin Exp Metastasis 26, 345–355 (2009). https://doi.org/10.1007/s10585-008-9205-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-008-9205-z

Keywords

Navigation