Skip to main content
Log in

TM4SF3 promotes esophageal carcinoma metastasis via upregulating ADAM12m expression

  • Research Paper
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

Esophageal cancer is characterized by rapid clinical progression and poor prognosis due to adjacent tissue invasion and distant organs metastasis at a very early stage. TM4SF3 (transmembrane 4 superfamily 3), a member of tetraspanin family, has been reported as a metastasis associated gene in many types of tumors. Herein, we described new properties of TM4SF3 in tumor metastasis, which suggested that this gene might be involved in esophageal carcinoma metastasis. Western blotting revealed that TM4SF3 was overexpressed in 57.1% (8/14) of esophageal carcinomas and esophageal carcinoma cell lines with high-invasive potential. Exogenous expression of TM4SF3 in two low-invasive esophageal carcinoma cell lines, KYSE150 and EC9706, significantly promoted cell migration and invasion. Upregulating TM4SF3 expression in EC9706 cells promoted xenograft tumor invading into surrounding tissues, enhanced lung metastasis, and shortened the lifespan of mice (median survival EC9706-TM4SF3 106.5 days versus EC9706-Vector 169.0 days, P < 0.0001) in a spontaneous metastasis model. Further studies demonstrated that ADAM12m was upregulated by TM4SF3 overexpression in vitro and in vivo. Abrogating up-expression of ADAM12m by siRNA significantly suppressed TM4SF3-mediated invasion. Together, these data from our studies indicated that overexpression of TM4SF3 in esophageal cancer conferred advantage to the invasion and metastasis of this destructive disease. Upregulated expression of ADAM12m by TM4SF3 might play a key role in TM4SF3-mediated invasion and metastasis. TM4SF3 and ADAM12m might be potential targets of esophageal carcinoma for anti-metastasis therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ADAM12:

A disintegrin and metalloproteinase

EMT:

Epithelial-mesenchymal transition

HE:

Hematoxylin and eosin

MMP:

Metalloproteinase(s)

RNAi:

RNA interference

SiRNA:

Small interference RNA

TM4SF3:

Transmembrane 4 superfamily 3

References

  1. Parkin DM, Bray F, Ferlay J et al (2005) Global cancer statistics, 2002. CA Cancer J Clin 55(2):74–108

    PubMed  Google Scholar 

  2. Enzinger PC, Mayer RJ (2003) Esophageal cancer. N Engl J Med 349(23):2241–2252

    Article  PubMed  CAS  Google Scholar 

  3. Furihata T, Sakai T, Kawamata H et al (2001) A new in vivo model for studying invasion and metastasis of esophageal squamous cell carcinoma. Int J Oncol 19(5):903–907

    PubMed  CAS  Google Scholar 

  4. Boucheix C, Rubinstein E (2001) Tetraspanins. Cell Mol Life Sci 58(9):1189–1205

    Article  PubMed  CAS  Google Scholar 

  5. Hemler ME (2005) Tetraspanin functions and associated microdomains. Nat Rev 6(10):801–811

    Article  CAS  Google Scholar 

  6. Szala S, Kasai Y, Steplewski Z et al (1990) Molecular cloning of cDNA for the human tumor-associated antigen CO-029 and identification of related transmembrane antigens. Proc Natl Acad Sci USA 87(17):6833–6837

    Article  PubMed  CAS  Google Scholar 

  7. Kuhn S, Koch M, Nubel T et al (2007) A complex of EpCAM, claudin-7, CD44 variant isoforms, and tetraspanins promotes colorectal cancer progression. Mol Cancer Res 5(6):553–567

    Article  PubMed  CAS  Google Scholar 

  8. Kanetaka K, Sakamoto M, Yamamoto Y et al (2001) Overexpression of tetraspanin CO-029 in hepatocellular carcinoma. J Hepatol 35(5):637–642

    Article  PubMed  CAS  Google Scholar 

  9. Kanetaka K, Sakamoto M, Yamamoto Y et al (2003) Possible involvement of tetraspanin CO-029 in hematogenous intrahepatic metastasis of liver cancer cells. J Gastroenterol Hepatol 18(11):1309–1314

    Article  PubMed  CAS  Google Scholar 

  10. Zoller M (2006) Gastrointestinal tumors: metastasis and tetraspanins. Z Gastroenterol 44(7):573–586

    Article  PubMed  CAS  Google Scholar 

  11. Herlevsen M, Schmidt DS, Miyazaki K et al (2003) The association of the tetraspanin D6.1A with the alpha6beta4 integrin supports cell motility and liver metastasis formation. J Cell Sci 116(Pt 21):4373–4390

    Article  PubMed  CAS  Google Scholar 

  12. Gesierich S, Paret C, Hildebrand D et al (2005) Colocalization of the tetraspanins, CO-029 and CD151, with integrins in human pancreatic adenocarcinoma: impact on cell motility. Clin Cancer Res 11(8):2840–2852

    Article  PubMed  CAS  Google Scholar 

  13. Gesierich S, Berezovskiy I, Ryschich E et al (2006) Systemic induction of the angiogenesis switch by the tetraspanin D6.1A/CO-029. Cancer Res 66(14):7083–7094

    Article  PubMed  CAS  Google Scholar 

  14. Bick RL (1992) Coagulation abnormalities in malignancy: a review. Semin Thromb Hemost 18(4):353–372

    Article  PubMed  CAS  Google Scholar 

  15. Gschwind A, Hart S, Fischer OM et al (2003) TACE cleavage of proamphiregulin regulates GPCR-induced proliferation and motility of cancer cells. Embo J 22(10):2411–2421

    Article  PubMed  CAS  Google Scholar 

  16. Chandrasekar B, Bysani S, Mummidi S (2004) CXCL16 signals via Gi, phosphatidylinositol 3-kinase, Akt, I kappa B kinase, and nuclear factor-kappa B and induces cell-cell adhesion and aortic smooth muscle cell proliferation. J Biol Chem 279(5):3188–3196

    Article  PubMed  CAS  Google Scholar 

  17. Rhodes DR, Yu J, Shanker K et al (2004) ONCOMINE: a cancer microarray database and integrated data-mining platform. Neoplasia (New York, NY 6(1):1–6

    CAS  Google Scholar 

  18. Gu Z, Cui J, Brown S et al (2005) A highly specific inhibitor of matrix metalloproteinase-9 rescues laminin from proteolysis and neurons from apoptosis in transient focal cerebral ischemia. J Neurosci 25(27):6401–6408

    Article  PubMed  CAS  Google Scholar 

  19. Mannello F, Sebastiani M (2003) Zymographic analyses and measurement of matrix metalloproteinase-2 and -9 in nipple aspirate fluids. Clin Chem 49(9):1546–1550

    Article  PubMed  CAS  Google Scholar 

  20. Yang Z, Kyriakides TR, Bornstein P (2000) Matricellular proteins as modulators of cell-matrix interactions: adhesive defect in thrombospondin 2-null fibroblasts is a consequence of increased levels of matrix metalloproteinase-2. Mol Biol Cell 11(10):3353–3364

    PubMed  CAS  Google Scholar 

  21. Lunter PC, van Kilsdonk JW, van Beek H et al (2005) Activated leukocyte cell adhesion molecule (ALCAM/CD166/MEMD), a novel actor in invasive growth, controls matrix metalloproteinase activity. Cancer Res 65(19):8801–8808

    Article  PubMed  CAS  Google Scholar 

  22. Agarwal R, D’Souza T, Morin PJ (2005) Claudin-3 and claudin-4 expression in ovarian epithelial cells enhances invasion and is associated with increased matrix metalloproteinase-2 activity. Cancer Res 65(16):7378–7385

    Article  PubMed  CAS  Google Scholar 

  23. Huang J, Bridges LC, White JM (2005) Selective modulation of integrin-mediated cell migration by distinct ADAM family members. Mol Biol Cell 16(10):4982–4991

    Article  PubMed  CAS  Google Scholar 

  24. Luo ML, Shen XM, Zhang Y et al (2006) Amplification and overexpression of CTTN (EMS1) contribute to the metastasis of esophageal squamous cell carcinoma by promoting cell migration and anoikis resistance. Cancer Res 66(24):11690–11699

    Article  PubMed  CAS  Google Scholar 

  25. Shen XM, Wu YP, Feng YB et al (2007) Interaction of MT1-MMP and laminin-5gamma2 chain correlates with metastasis and invasiveness in human esophageal squamous cell carcinoma. Clin Exp Metastasis 24(7):541–550

    Article  PubMed  CAS  Google Scholar 

  26. Chu YW, Yang PC, Yang SC et al (1997) Selection of invasive and metastatic subpopulations from a human lung adenocarcinoma cell line. Am J Respir Cell Mol Biol 17(3):353–360

    PubMed  CAS  Google Scholar 

  27. Sato H, Takino T, Okada Y et al (1994) A matrix metalloproteinase expressed on the surface of invasive tumour cells. Nature 370(6484):61–65

    Article  PubMed  CAS  Google Scholar 

  28. Deryugina EI, Ratnikov B, Monosov E et al (2001) MT1-MMP initiates activation of pro-MMP-2 and integrin alphavbeta3 promotes maturation of MMP-2 in breast carcinoma cells. Exp Cell Res 263(2):209–223

    Article  PubMed  CAS  Google Scholar 

  29. Friedl P, Wolf K (2003) Tumour-cell invasion and migration: diversity and escape mechanisms. Nat Rev Cancer 3(5):362–374

    Article  PubMed  CAS  Google Scholar 

  30. Seals DF, Azucena EF Jr, Pass I et al (2005) The adaptor protein Tks5/Fish is required for podosome formation and function, and for the protease-driven invasion of cancer cells. Cancer Cell 7(2):155–165

    Article  PubMed  CAS  Google Scholar 

  31. Masson V, de la Ballina LR, Munaut C et al (2005) Contribution of host MMP-2 and MMP-9 to promote tumor vascularization and invasion of malignant keratinocytes. Faseb J 19(2):234–236

    PubMed  CAS  Google Scholar 

  32. Liotta LA, Steeg PS, Stetler-Stevenson WG (1991) Cancer metastasis and angiogenesis: an imbalance of positive and negative regulation. Cell 64(2):327–336

    Article  PubMed  CAS  Google Scholar 

  33. Roy R, Wewer UM, Zurakowski D et al (2004) ADAM 12 cleaves extracellular matrix proteins and correlates with cancer status and stage. J Biol Chem 279(49):51323–51330

    Article  PubMed  CAS  Google Scholar 

  34. Le Pabic H, Bonnier D, Wewer UM et al (2003) ADAM12 in human liver cancers: TGF-beta-regulated expression in stellate cells is associated with matrix remodeling. Hepatology 37(5):1056–1066

    Article  PubMed  CAS  Google Scholar 

  35. Carl-McGrath S, Lendeckel U, Ebert M et al (2005) The disintegrin-metalloproteinases ADAM9, ADAM12, and ADAM15 are upregulated in gastric cancer. Int J Oncol 26(1):17–24

    PubMed  CAS  Google Scholar 

  36. Iba K, Albrechtsen R, Gilpin BJ et al (1999) Cysteine-rich domain of human ADAM 12 (meltrin alpha) supports tumor cell adhesion. Am J Pathol 154(5):1489–1501

    PubMed  CAS  Google Scholar 

  37. Thodeti CK, Frohlich C, Nielsen CK et al (2005) ADAM12-mediated focal adhesion formation is differently regulated by beta1 and beta3 integrins. FEBS Lett 579(25):5589–5595

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National key basic research program (NKBRP) (973 program) (No. 2002CB513106) and the National Natural Science Foundation (30570818 and 30600279).We thank Professor Mingrong Wang (Cancer Institute/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China) for the kind supply the EC9706 cell line and Dr. Shimada Y for the KYSE esophageal cancer cells (Kyoto University Graduate School of Medicine, Japan).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-Hua Yang.

Appendix

Appendix

Case no.

Age (year)

Gender

Grade

TNM Stage

1

48

M

G3

T3N0M0

2

58

F

G3

T2N0M0

3

51

M

G2

T4N1M0

4

52

M

G2

T3N0M1

5

63

M

G2

T3N1M0

6

55

M

G3

T3N1M0

7

61

M

G1

T2N0M0

8

62

M

G3

T2N0M0

9

66

M

G1

T3N1M)

10

62

F

G3

T3N1M0

11

68

M

G2

T2N0M0

12

59

M

G3

T3N1M0

13

62

M

G2

T3N2M0

14

67

M

G1

T3N1M0

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, Z., Ran, YL., Hu, H. et al. TM4SF3 promotes esophageal carcinoma metastasis via upregulating ADAM12m expression. Clin Exp Metastasis 25, 537–548 (2008). https://doi.org/10.1007/s10585-008-9168-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-008-9168-0

Keywords

Navigation