Skip to main content

Advertisement

Log in

The laminin α-1 chain derived peptide, AG73, increases fibronectin levels in breast and melanoma cancer cells

  • Research Paper
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

Laminin-111 promotes the malignant phenotype, and a 12-mer synthetic peptide (AG73, RKRLQVQLSIRT) from the carboxyl terminus of the α1 chain increases B16F10 melanoma metastasis to the lung and liver. Using an antibody array, fibronectin was identified as an up-regulated protein in B16F10 cells after incubation with this peptide. The increased fibronectin is cell-associated with no increase in soluble fibronectin. The AG73 peptide increased the number and size of bone metastases with both B16F10 melanoma and MDA-231 breast carcinoma cells in an intracardiac injection model. Using siRNA transfection, we found that a reduction in fibronectin expression did not reduce bone metastasis in the presence of the metastasis-promoting peptide AG73. We conclude that the laminin peptide AG73 increases metastasis independently of fibronectin expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

GFP:

Green fluorescent protein

FBS:

Fetal bovine serum

PBS:

Phosphate buffered saline

q-PCR:

Quantitative-polymerase chain reaction

H + E:

Hematoxilin and eosin

References

  1. Colognato H, Yurchenco PD (2000) Form and function: the laminin family of heterotrimers. Dev Dyn 218:213–234

    Article  PubMed  CAS  Google Scholar 

  2. Aumailley M, Bruckner-Tuderman L, Carter WG et al (2005) A simplified laminin nomenclature. Matrix Biol 24:326–332

    Article  PubMed  CAS  Google Scholar 

  3. Kleinman HK, Koblinski J, Lee S et al (2001) Role of basement membrane in tumor growth and metastasis. Surg Oncol Clin N Am 10:329–338, ix

    Google Scholar 

  4. Givant-Horwitz V, Davidson B, Reich R (2005) Laminin-induced signaling in tumor cells. Cancer Lett 223:1–10

    Article  PubMed  CAS  Google Scholar 

  5. Kanemoto T, Reich R, Royce L et al (1990) Identification of an amino acid sequence from the laminin A chain that stimulates metastasis and collagenase IV production. Proc Natl Acad Sci USA 87:2279–2283

    Article  PubMed  CAS  Google Scholar 

  6. Stack MS, Gray RD, Pizzo SV (1993) Modulation of murine B16F10 melanoma plasminogen activator production by a synthetic peptide derived from the laminin A chain. Cancer Res 53:1998–2004

    PubMed  CAS  Google Scholar 

  7. Stack MS, Pizzo SV (1994) The effect of substituted laminin A chain-derived peptides on the conformation and activation kinetics of plasminogen. Arch Biochem Biophys 309:117–122

    Article  PubMed  CAS  Google Scholar 

  8. Yamamura K, Kibbey MC, Kleinman HK (1993) Melanoma cells selected for adhesion to laminin peptides have different malignant properties. Cancer Res 53:423–428

    PubMed  CAS  Google Scholar 

  9. Ponce ML, Nomizu M, Kleinman HK (2001) An angiogenic laminin site and its antagonist bind through the alpha(v)beta3 and alpha5beta1 integrins. Faseb J 15:1389–1397

    Article  PubMed  CAS  Google Scholar 

  10. Kuratomi Y, Nomizu M, Tanaka K et al (2002) Laminin gamma 1 chain peptide, C-16 (KAFDITYVRLKF), promotes migration, MMP-9 secretion, and pulmonary metastasis of B16-F10 mouse melanoma cells. Br J Cancer 86:1169–1173

    Article  PubMed  CAS  Google Scholar 

  11. Ponce ML, Kleinman HK (2003) Identification of redundant angiogenic sites in laminin alpha1 and gamma1 chains. Exp Cell Res 285:189–195

    Article  PubMed  CAS  Google Scholar 

  12. Graf J, Iwamoto Y, Sasaki M et al (1987) Identification of an amino acid sequence in laminin mediating cell attachment, chemotaxis, and receptor binding. Cell 48:989–996

    Article  PubMed  CAS  Google Scholar 

  13. Iwamoto Y, Robey FA, Graf J et al (1987) YIGSR, a synthetic laminin pentapeptide, inhibits experimental metastasis formation. Science 238:1132–1134

    Article  PubMed  CAS  Google Scholar 

  14. Nakai M, Mundy GR, Williams PJ et al (1992) A synthetic antagonist to laminin inhibits the formation of osteolytic metastases by human melanoma cells in nude mice. Cancer Res 52:5395–5399

    PubMed  CAS  Google Scholar 

  15. Sakamoto N, Iwahana M, Tanaka NG et al (1991) Inhibition of angiogenesis and tumor growth by a synthetic laminin peptide, CDPGYIGSR-NH2. Cancer Res 51:903–906

    PubMed  CAS  Google Scholar 

  16. Kim WH, Nomizu M, Song SY et al (1998) Laminin-alpha1-chain sequence Leu-Gln-Val-Gln-Leu-Ser-Ile-Arg (LQVQLSIR) enhances murine melanoma cell metastases. Int J Cancer 77:632–639

    Article  PubMed  CAS  Google Scholar 

  17. Yoshida Y, Hosokawa K, Dantes A et al (2001) Role of laminin in ovarian cancer tumor growth and metastasis via regulation of Mdm2 and Bcl-2 expression. Int J Oncol 18:913–921

    PubMed  CAS  Google Scholar 

  18. Song SY, Nomizu M, Yamada Y et al (1997) Liver metastasis formation by laminin-1 peptide (LQVQLSIR)-adhesion selected B16-F10 melanoma cells. Int J Cancer 71:436–441

    Article  PubMed  CAS  Google Scholar 

  19. Engbring JA, Hoffman MP, Karmand AJ et al (2002) The B16F10 cell receptor for a metastasis-promoting site on laminin-1 is a heparan sulfate/chondroitin sulfate-containing proteoglycan. Cancer Res 62:3549–3554

    PubMed  CAS  Google Scholar 

  20. Hoffman MP, Engbring JA, Nielsen PK et al (2001) Cell type-specific differences in glycosaminoglycans modulate the biological activity of a heparin-binding peptide (RKRLQVQLSIRT) from the G domain of the laminin alpha1 chain. J Biol Chem 276:22077–22085

    Article  PubMed  CAS  Google Scholar 

  21. Suzuki N, Ichikawa N, Kasai S et al (2003) Syndecan binding sites in the laminin alpha1 chain G domain. Biochemistry 42:12625–12633

    Article  PubMed  CAS  Google Scholar 

  22. Hozumi K, Suzuki N, Nielsen PK et al (2006) Laminin alpha1 chain LG4 module promotes cell attachment through syndecans and cell spreading through integrin alpha2beta1. J Biol Chem 281:32929–32940

    Article  PubMed  CAS  Google Scholar 

  23. Mochizuki M, Philp D, Hozumi K et al (2007) Angiogenic activity of syndecan-binding laminin peptide AG73 (RKRLQVQLSIRT). Arch Biochem Biophys 459:249–255

    Article  PubMed  CAS  Google Scholar 

  24. Maniotis AJ, Folberg R, Hess A et al (1999) Vascular channel formation by human melanoma cells in vivo and in vitro: vasculogenic mimicry. Am J Pathol 155:739–752

    PubMed  CAS  Google Scholar 

  25. Clark EA, Golub TR, Lander ES et al (2000) Genomic analysis of metastasis reveals an essential role for RhoC. Nature 406:532–535

    Article  PubMed  CAS  Google Scholar 

  26. Zhang L, Zhou W, Velculescu VE et al (1997) Gene expression profiles in normal and cancer cells. Science 276:1268–1272

    Article  PubMed  CAS  Google Scholar 

  27. Larsen M, Tremblay ML, Yamada KM (2003) Phosphatases in cell-matrix adhesion and migration. Nat Rev Mol Cell Biol 4:700–711

    Article  PubMed  CAS  Google Scholar 

  28. Arguello F, Baggs RB, Frantz CN (1988) A murine model of experimental metastasis to bone and bone marrow. Cancer Res 48:6876–6881

    PubMed  CAS  Google Scholar 

  29. Wierzbicka-Patynowski I, Schwarzbauer JE (2003) The ins and outs of fibronectin matrix assembly. J Cell Sci 116:3269–3276

    Article  PubMed  CAS  Google Scholar 

  30. Pankov R, Cukierman E, Katz BZ et al (2000) Integrin dynamics and matrix assembly: tensin-dependent translocation of alpha(5)beta(1) integrins promotes early fibronectin fibrillogenesis. J Cell Biol 148:1075–1090

    Article  PubMed  CAS  Google Scholar 

  31. Pollard TD, Borisy GG (2003) Cellular motility driven by assembly and disassembly of actin filaments. Cell 112:453–465

    Article  PubMed  CAS  Google Scholar 

  32. Dunsmore SE, Martinez-Williams C, Goodman RA et al (1995) Turnover of fibronectin and laminin by alveolar epithelial cells. Am J Physiol 269:L766–775

    PubMed  CAS  Google Scholar 

  33. Polin RA, Yoder MC, Douglas SD et al (1989) Fibronectin turnover in the premature neonate measured with [15N]glycine. Am J Clin Nutr 49:314–319

    PubMed  CAS  Google Scholar 

  34. Huijzer JC, Uhlenkott CE, Meadows GG (1995) Differences in expression of metalloproteinases and plasminogen activators in murine melanocytes and B16 melanoma variants: lack of association with in vitro invasion. Int J Cancer 63:92–99

    Article  PubMed  CAS  Google Scholar 

  35. Fidler IJ (1973) Selection of successive tumour lines for metastasis. Nat New Biol 242:148–149

    PubMed  CAS  Google Scholar 

  36. Yoneda T, Sasaki A, Mundy GR (1994) Osteolytic bone metastasis in breast cancer. Breast Cancer Res Treat 32:73–84

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Drs. Hynda Kleinman for her expert advice and guidance, Takashi Nakamura for his expertise in scanning the antibody microarray, Matthew P. Hoffman and Melinda Larsen for help with siRNA methodology and primer design, Danny Welch for the MDA-231 breast cancer cells expressing GFP, and Kenneth M. Yamada for providing the rabbit anti-human fibronectin antibody.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer E. Koblinski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Engbring, J.A., Hossain, R., VanOsdol, S.J. et al. The laminin α-1 chain derived peptide, AG73, increases fibronectin levels in breast and melanoma cancer cells. Clin Exp Metastasis 25, 241–252 (2008). https://doi.org/10.1007/s10585-007-9138-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-007-9138-y

Keywords

Navigation