Skip to main content

Advertisement

Log in

Extravasation and homing mechanisms in multiple myeloma

  • Review
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

Multiple myeloma (MM) is a malignant B-cell disorder characterized by a monoclonal expansion of plasma cells (PC) in the bone marrow (BM). During the main course of disease evolution, MM cells depend on the BM microenvironment for their growth and survival. Reciprocal interactions between MM cells and the BM mediate not only MM cell growth, but also protect them against apoptosis and cause bone disease and angiogenesis. A striking feature of MM represents the predominant localization and retention of MM cells in the BM. Although BM PC indeed represent the main neoplastic cell type, small numbers of MM cells can also be detected in the peripheral blood circulation. It can be assumed that these circulating cells represent the tumour-spreading component of the disease. This implicates that MM cells have the capacity to (re)circulate, to extravasate and to migrate to the BM (homing). In analogy to the migration and homing of normal leucocytes, the BM homing of MM cells is mediated by a multistep process of extravasation with adhesion to the endothelium, invasion of the subendothelial basement membrane, followed by further migration within the stroma, mediated by chemotactic factors. At the end stage of disease, MM cells are thought to develop autocrine growth supporting loops that enable them to survive and proliferate in the absence of the BM microenvironment and to become stroma-independent. In this stage, the number of circulating cells increases and growth at extramedullary sites can occur, associated with alteration in adhesion molecule and chemokine receptor expression. This review summarizes the recent progress in the study of the extravasation and homing mechanisms of MM cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kyle RA, Rajkumar SV (2004) Multiple myeloma. N Engl J Med 351(18):1860–1873

    Article  PubMed  CAS  Google Scholar 

  2. Bakkus MH, Heirman C, Van Riet I, Van Camp B, Thielemans K (1992) Evidence that multiple myeloma Ig heavy chain VDJ genes contain somatic mutations but show no intraclonal variation. Blood 80(9):2326–2335

    PubMed  CAS  Google Scholar 

  3. Yaccoby S, Barlogie B, Epstein J (1998) Primary myeloma cells growing in SCID-hu mice: a model for studying the biology and treatment of myeloma and its manifestations. Blood 92(8):2908–2913

    PubMed  CAS  Google Scholar 

  4. Yaccoby S, Epstein J (1999) The proliferative potential of myeloma plasma cells manifest in the SCID-hu host. Blood 94(10):3576–3582

    PubMed  CAS  Google Scholar 

  5. Yata K, Yaccoby S (2004) The SCID-rab model: a novel in vivo system for primary human myeloma demonstrating growth of CD138-expressing malignant cells. Leukemia 18(11):1891–1897

    Article  PubMed  CAS  Google Scholar 

  6. Witzig TE, Kimlinger TK, Ahmann GJ, Katzmann JA, Greipp PR (1996) Detection of myeloma cells in the peripheral blood by flow cytometry. Cytometry 26(2):113–120

    Article  PubMed  CAS  Google Scholar 

  7. Mitsiades CS, Mitsiades NS, Munshi NC, Richardson PG, Anderson KC (2006) The role of the bone microenvironment in the pathophysiology and therapeutic management of multiple myeloma: interplay of growth factors, their receptors and stromal interactions. Eur J Cancer 42(11):1564–1573

    Article  PubMed  CAS  Google Scholar 

  8. Hallek M, Bergsagel PL, Anderson KC (1998) Multiple myeloma: increasing evidence for a multistep transformation process. Blood 91(1):3–21

    PubMed  CAS  Google Scholar 

  9. Hideshima T, Nakamura N, Chauhan D, Anderson KC (2001) Biologic sequelae of interleukin-6 induced PI3-K/Akt signaling in multiple myeloma. Oncogene 20(42):5991–6000

    Article  PubMed  CAS  Google Scholar 

  10. Qiang YW, Kopantzev E, Rudikoff S (2002) Insulin-like growth factor-I signaling in multiple myeloma: downstream elements, functional correlates, and pathway cross-talk. Blood 99(11):4138–4146

    Article  PubMed  CAS  Google Scholar 

  11. Podar K, Anderson KC (2005) The pathophysiologic role of VEGF in hematologic malignancies: therapeutic implications. Blood 105(4):1383–1395

    Article  PubMed  CAS  Google Scholar 

  12. Bataille R, Chappard D, Marcelli C, Dessauw P, Sany J, Baldet P, Alexandre C (1989) Mechanisms of bone destruction in multiple myeloma: the importance of anunbalanced process in determining the severity of lytic bone disease. J Clin Oncol 7(12):1909–1914

    PubMed  CAS  Google Scholar 

  13. Roux S, Meignin V, Quillard J, Meduri G, Guiochon-Mantel A, Fermand JP, Milgrom E, Mariette X (2002) RANK (receptor activator of nuclear factor-kappaB) and RANKL expression in multiple myeloma. Br J Haematol 117(1):86–92

    Article  PubMed  CAS  Google Scholar 

  14. Pearse RN, Sordillo EM, Yaccoby S, Wong BR, Liau DF, Colman N, Michaeli J, Epstein J, Choi Y (2001) Multiple myeloma disrupts the TRANCE/ osteoprotegerin cytokine axis to trigger bone destruction and promote tumor progression. Proc Natl Acad Sci USA 98(20):11581–11586

    Article  PubMed  CAS  Google Scholar 

  15. Giuliani N, Bataille R, Mancini C, Lazzaretti M, Barille S (2001) Myeloma cells induce imbalance in the osteoprotegerin/osteoprotegerin ligand system in the human bone marrow environment. Blood 98(13):3527–3533

    Article  PubMed  CAS  Google Scholar 

  16. Choi SJ, Cruz JC, Craig F, Chung H, Devlin RD, Roodman GD, Alsina M (2000) Macrophage inflammatory protein 1-alpha is a potential osteoclast stimulatory factor in multiple myeloma. Blood 96(2):671–675

    PubMed  CAS  Google Scholar 

  17. Abe M, Hiura K, Wilde J, Moriyama K, Hashimoto T, Ozaki S, Wakatsuki S, Kosaka M, Kido S, Inoue D, Matsumoto T (2002) Role for macrophage inflammatory protein (MIP)-1alpha and MIP-1beta in the development of osteolytic lesions in multiple myeloma. Blood 100(6):2195–2202

    PubMed  CAS  Google Scholar 

  18. Oba Y, Lee JW, Ehrlich LA, Chung HY, Jelinek DF, Callander NS, Horuk R, Choi SJ, Roodman GD (2005) MIP-1alpha utilizes both CCR1 and CCR5 to induce osteoclast formation and increase adhesion of myeloma cells to marrow stromal cells. Exp Hematol 33(3):272–278

    Article  PubMed  CAS  Google Scholar 

  19. Zannettino AC, Farrugia AN, Kortesidis A, Manavis J, To LB, Martin SK, Diamond P, Tamamura H, Lapidot T, Fujii N, Gronthos S (2005) Elevated serum levels of stromal-derived factor-1alpha are associated with increased osteoclast activity and osteolytic bone disease in multiple myeloma patients. Cancer Res 65(5):1700–1709

    Article  PubMed  CAS  Google Scholar 

  20. Michigami T, Shimizu N, Williams PJ, Niewolna M, Dallas SL, Mundy GR, Yoneda T (2000) Cell-cell contact between marrow stromal cells and myeloma cells via VCAM-1 and alpha(4)beta(1)-integrin enhances production of osteoclast-stimulating activity. Blood 96(5):1953–1960

    PubMed  CAS  Google Scholar 

  21. Cozzolino F, Torcia M, Aldinucci D, Rubartelli A, Miliani A, Shaw AR, Lansdorp PM, Di Guglielmo R (1989) Production of interleukin-1 by bone marrow myeloma cells. Blood 74(1):380–387

    PubMed  CAS  Google Scholar 

  22. Barille S, Bataille R, Amiot M (2000) The role of interleukin-6 and interleukin-6/interleukin-6 receptor-alpha complex in the pathogenesis of multiple myeloma. Eur Cytokine Netw 11(4):546–551

    PubMed  CAS  Google Scholar 

  23. Garrett IR, Durie BG, Nedwin GE, Gillespie A, Bringman T, Sabatini M, Bertolini DR, Mundy GR (1987) Production of lymphotoxin, a bone-resorbing cytokine, by cultured human myeloma cells. N Engl J Med 317(9):526–533

    Article  PubMed  CAS  Google Scholar 

  24. Lee JW, Chung HY, Ehrlich LA, Jelinek DF, Callander NS, Roodman GD, Choi SJ (2004) IL-3 expression by myeloma cells increases both osteoclast formation and growth of myeloma cells. Blood 103(6):2308–2315

    Article  PubMed  CAS  Google Scholar 

  25. Tian E, Zhan F, Walker R, Rasmussen E, Ma Y, Barlogie B, Shaughnessy JD Jr (2003) The role of the Wnt-signaling antagonist DKK1 in the development of osteolytic lesions in multiple myeloma. N Engl J Med 349(26):2483–2494

    Article  PubMed  CAS  Google Scholar 

  26. Giuliani N, Colla S, Morandi F, Lazzaretti M, Sala R, Bonomini S, Grano M, Colucci S, Svaldi M, Rizzoli V (2005) Myeloma cells block RUNX2/CBFA1 activity in human bone marrow osteoblast progenitors and inhibit osteoblast formation and differentiation. Blood 106(7):2472–2483

    Article  PubMed  CAS  Google Scholar 

  27. Abe M, Hiura K, Wilde J, Shioyasono A, Moriyama K, Hashimoto T, Kido S, Oshima T, Shibata H, Ozaki S, Inoue D, Matsumoto T (2004) Osteoclasts enhance myeloma cell growth and survival via cell-cell contact: a vicious cycle between bone destruction and myeloma expansion. Blood 104(8):2484–2491

    Article  PubMed  CAS  Google Scholar 

  28. Vacca A, Ribatti D (2006) Bone marrow angiogenesis in multiple myeloma. Leukemia 20(2):193–199

    Article  PubMed  CAS  Google Scholar 

  29. Rajkumar SV, Mesa RA, Fonseca R, Schroeder G, Plevak MF, Dispenzieri A, Lacy MQ, Lust JA, Witzig TE, Gertz MA, Kyle RA, Russell SJ, Greipp PR (2002) Bone marrow angiogenesis in 400 patients with monoclonal gammopathy of undetermined significance, multiple myeloma, and primary amyloidosis. Clin Cancer Res 8(7):2210–2216

    PubMed  Google Scholar 

  30. Asosingh K, De Raeve H, Menu E, Van Riet I, Van Marck E, Van Camp B, Vanderkerken K (2004) Angiogenic switch during 5T2MM murine myeloma tumorigenesis: role of CD45 heterogeneity. Blood 103(8):3131–3137

    Article  PubMed  CAS  Google Scholar 

  31. Vacca A, Ribatti D, Roncali L, Ranieri G, Serio G, Silvestris F, Dammacco F (1994) Bone marrow angiogenesis and progression in multiple myeloma. Br J Haematol 87(3):503–508

    Article  PubMed  CAS  Google Scholar 

  32. Kumar S, Gertz MA, Dispenzieri A, Lacy MQ, Wellik LA, Fonseca R, Lust JA, Witzig TE, Kyle RA, Greipp PR, Rajkumar SV (2004) Prognostic value of bone marrow angiogenesis in patients with multiple myeloma undergoing high-dose therapy. Bone Marrow Transplant 34(3):235–239

    Article  PubMed  CAS  Google Scholar 

  33. Sezer O, Niemoller K, Eucker J, Jakob C, Kaufmann O, Zavrski I, Dietel M, Possinger K (2000) Bone marrow microvessel density is a prognostic factor for survival in patients with multiple myeloma. Ann Hematol 79(10):574–577

    Article  PubMed  CAS  Google Scholar 

  34. Rajkumar SV, Leong T, Roche PC, Fonseca R, Dispenzieri A, Lacy MQ, Lust JA, Witzig TE, Kyle RA, Gertz MA, Greipp PR (2000) Prognostic value of bone marrow angiogenesis in multiple myeloma. Clin Cancer Res 6(8):3111–3116

    PubMed  CAS  Google Scholar 

  35. Pruneri G, Ponzoni M, Ferreri AJ, Decarli N, Tresoldi M, Raggi F, Baldessari C, Freschi M, Baldini L, Goldaniga M, Neri A, Carboni N, Bertolini F, Viale G (2002) Microvessel density, a surrogate marker of angiogenesis, is significantly related to survival in multiple myeloma patients. Br J Haematol 118(3):817–822

    Article  PubMed  Google Scholar 

  36. Di Raimondo F, Azzaro MP, Palumbo G, Bagnato S, Giustolisi G, Floridia P, Sortino G, Giustolisi R (2000) Angiogenic factors in multiple myeloma: higher levels in bone marrow than in peripheral blood. Haematologica 85(8):800–805

    PubMed  Google Scholar 

  37. Dankbar B, Padro T, Leo R, Feldmann B, Kropff M, Mesters RM, Serve H, Berdel WE, Kienast J (2000) Vascular endothelial growth factor and interleukin-6 in paracrine tumor-stromal cell interactions in multiple myeloma. Blood 95(8):2630–2636

    PubMed  CAS  Google Scholar 

  38. Tai YT, Podar K, Mitsiades N, Lin B, Mitsiades C, Gupta D, Akiyama M, Catley L, Hideshima T, Munshi NC, Treon SP, Anderson KC (2003) CD40 induces human multiple myeloma cell migration via phosphatidylinositol 3-kinase/AKT/NF-kappa B signaling. Blood 101(7):2762–2769

    Article  PubMed  CAS  Google Scholar 

  39. Podar K, Tai YT, Davies FE, Lentzsch S, Sattler M, Hideshima T, Lin BK, Gupta D, Shima Y, Chauhan D, Mitsiades C, Raje N, Richardson P, Anderson KC (2001) Vascular endothelial growth factor triggers signaling cascades mediating multiple myeloma cell growth and migration. Blood 98:428–435

    Article  PubMed  CAS  Google Scholar 

  40. Podar K, Tai YT, Lin BK, Narsimhan RP, Sattler M, Kijima T, Salgia R, Gupta D, Chauhan D, Anderson KC (2002) Vascular endothelial growth factor-induced migration of multiple myeloma cells is associated with beta 1 integrin- and phosphatidylinositol 3-kinase-dependent PKC alpha activation. J Biol Chem 277(10):7875–7881

    Article  PubMed  CAS  Google Scholar 

  41. Vacca A, Ria R, Ribatti D, Semeraro F, Djonov V, Di Raimondo F, Dammacco F (2003) A paracrine loop in the vascular endothelial growth factor pathway triggers tumor angiogenesis and growth in multiple myeloma. Haematologica 88(2):176–185

    PubMed  CAS  Google Scholar 

  42. Gupta D, Treon SP, Shima Y, Hideshima T, Podar K, Tai YT, Lin B, Lentzsch S, Davies FE, Chauhan D, Schlossman RL, Richardson P, Ralph P, Wu L, Payvandi F, Muller G, Stirling DI, Anderson KC (2001) Adherence of multiple myeloma cells to bone marrow stromal cells upregulates vascular endothelial growth factor secretion: therapeutic applications. Leukemia 15(12):1950–1961

    PubMed  CAS  Google Scholar 

  43. Giuliani N, Lunghi P, Morandi F, Colla S, Bonomini S, Hojden M, Rizzoli V, Bonati A (2004) Downmodulation of ERK protein kinase activity inhibits VEGF secretion by human myeloma cells and myeloma-induced angiogenesis. Leukemia 18(3):628–635

    Article  PubMed  CAS  Google Scholar 

  44. Bisping G, Leo R, Wenning D, Dankbar B, Padro T, Kropff M, Scheffold C, Kroger M, Mesters RM, Berdel WE, Kienast J (2003) Paracrine interactions of basic fibroblast growth factor and interleukin-6 in multiple myeloma. Blood 101(7):2775–2783

    Article  PubMed  CAS  Google Scholar 

  45. Colla S, Morandi F, Lazzaretti M, Rizzato R, Lunghi P, Bonomini S, Mancini C, Pedrazzoni M, Crugnola M, Rizzoli V, Giuliani N (2005) Human myeloma cells express the bone regulating gene Runx2/Cbfa1 and produce osteopontin that is involved in angiogenesis in multiple myeloma patients. Leukemia 19(12):2166–2176

    Article  PubMed  CAS  Google Scholar 

  46. Giuliani N, Colla S, Lazzaretti M, Sala R, Roti G, Mancini C, Bonomini S, Lunghi P, Hojden M, Genestreti G, Svaldi M, Coser P, Fattori PP, Sammarelli G, Gazzola GC, Bataille R, Almici C, Caramatti C, Mangoni L, Rizzoli V (2003) Proangiogenic properties of human myeloma cells: production of angiopoietin-1 and its potential relationship to myeloma-induced angiogenesis. Blood 102(2):638–645

    Article  PubMed  CAS  Google Scholar 

  47. Tanaka Y, Abe M, Hiasa M, Oda A, Amou H, Nakano A, Takeuchi K, Kitazoe K, Kido S, Inoue D, Moriyama K, Hashimoto T, Ozaki S, Matsumoto T (2007) Myeloma cell-osteoclast interaction enhances angiogenesis together with bone resorption: a role for vascular endothelial cell growth factor and osteopontin. Clin Cancer Res 13(3):816–823

    Article  PubMed  CAS  Google Scholar 

  48. Picker LJ, Butcher EC (1992) Physiological and molecular mechanisms of lymphocyte homing. Annu Rev Immunol 10:561–591

    Article  PubMed  CAS  Google Scholar 

  49. Butcher EC, Picker LJ (1996) Lymphocyte homing and homeostasis. Science 272(5258):60–66

    Article  PubMed  CAS  Google Scholar 

  50. Vanderkerken K, De Greef C, Asosingh K, Arteta B, De Veerman M, Vande Broek I, Van Riet I, Kobayashi M, Smedsrod B, Van Camp B (2000) Selective initial in vivo homing pattern of 5T2 multiple myeloma cells in the C57BL/KalwRij mouse. Br J Cancer 82(4):953–959

    Article  PubMed  CAS  Google Scholar 

  51. Alici E, Konstantinidis KV, Aints A, Dilber MS, Abedi-Valugerdi M (2004) Visualization of 5T33 myeloma cells in the C57BL/KaLwRij mouse: establishment of a new syngeneic murine model of multiple myeloma. Exp Hematol 32(11):1064–1072

    Article  PubMed  CAS  Google Scholar 

  52. Van Riet I, Van Camp B (1993) The involvement of adhesion molecules in the biology of multiple myeloma. Leuk Lymphoma 9(6):441–452

    Article  PubMed  Google Scholar 

  53. Van Riet I, Vanderkerken K, de Greef C, Van Camp B (1998) Homing behaviour of the malignant cell clone in multiple myeloma. Med Oncol 15:154–164

    Article  PubMed  Google Scholar 

  54. Asosingh K, De Raeve H, Croucher P, Goes E, Van Riet I, Van Camp B, Vanderkerken K (2001) In vivo homing and differentiation characteristics of mature (CD45−) and immature (CD45+) 5T multiple myeloma cells. Exp Hematol 29(1):77–86

    Article  PubMed  CAS  Google Scholar 

  55. Sanz-Rodriguez F, Hidalgo A, Teixido J (2001) Chemokine stromal cell-derived factor-1alpha modulates VLA-4 integrin mediated multiple myeloma cell adhesion to CS-1/fibronectin and VCAM-1. Blood 97(2):346–351

    Article  PubMed  CAS  Google Scholar 

  56. Okada T, Hawley RG, Kodaka M, Okuno H (1999) Significance of VLA-4-VCAM-1 interaction and CD44 for transendothelial invasion in a bone marrow metastatic myeloma model. Clin Exp Metastasis 17(7):623–629

    Article  PubMed  CAS  Google Scholar 

  57. Klominek J, Robert KH, Sundqvist KG (1993) Chemotaxis and haptotaxis of human malignant mesothelioma cells: effects of fibronectin, laminin, type IV collagen, and an autocrine motility factor-like substance. Cancer Res 53(18):4376–4382

    PubMed  CAS  Google Scholar 

  58. Engbring JA, Kleinman HK (2003) The basement membrane matrix in malignancy. J Pathol 200(4):465–470

    Article  PubMed  CAS  Google Scholar 

  59. Vande Broek I, Vanderkerken K, De Greef C, Asosingh K, Straetmans N, Van Camp B, Van Riet I (2001) Laminin-1-induced migration of multiple myeloma cells involves the high-affinity 67 kD laminin receptor. Br J Cancer 85(9):1387–1395

    Article  Google Scholar 

  60. Malinoff HL, Wicha MS (1983) Isolation of a cell surface receptor protein for laminin from murine fibrosarcoma cells. J Cell Biol 96:1475–1479

    Article  PubMed  CAS  Google Scholar 

  61. van den Brule FA, Price J, Sobel ME, Lambotte R, Castronovo V (1994) Inverse expression of two laminin binding proteins, 67LR and galectin-3, correlates with the invasive phenotype of trophoblastic tissue. Biochem Biophys Res Commun 201(1):388–393

    Article  PubMed  Google Scholar 

  62. Menard S, Tagliabue E, Colnaghi MI (1998) The 67 kDa laminin receptor as a prognostic factor in human cancer. Breast Cancer Res Treat 52:137–145

    Article  PubMed  CAS  Google Scholar 

  63. Boukerche H, Su ZZ, Kang DC, Fisher PB (2004) Identification and cloning of genes displaying elevated expression as a consequence of metastatic progression in human melanoma cells by rapid subtraction hybridization. Gene 343(1):191–201

    Article  PubMed  CAS  Google Scholar 

  64. Selleri C, Ragno P, Ricci P, Visconte V, Scarpato N, Carriero MV, Rotoli B, Rossi G, Montuori N (2006) The metastasis-associated 67-kDa laminin receptor is involved in G-CSF-induced hematopoietic stem cell mobilization. Blood 108(7):2476–2484

    Article  PubMed  CAS  Google Scholar 

  65. Graf J, Iwamoto Y, Sasaki M, Martin GR, Kleinman HK, Robey FA, Yamada Y (1987) Identification of an amino acid sequence in laminin mediating cell attachment, chemotaxis, and receptor binding. Cell 48:989–996

    Article  PubMed  CAS  Google Scholar 

  66. Vande Broek I, Asosingh K, Vanderkerken K, Straetmans N, Van Camp B, Van Riet I (2003) Chemokine receptor CCR2 is expressed by human multiple myeloma cells and mediates migration to bone marrow stromal cell-produced monocyte chemotactic proteins MCP-1, -2 and -3. Br J Cancer 88(6):855–862

    Article  CAS  Google Scholar 

  67. Moller C, Stromberg T, Juremalm M, Nilsson K, Nilsson G (2003) Expression and function of chemokine receptors in human multiple myeloma. Leukemia 17(1):203–210

    Article  PubMed  CAS  Google Scholar 

  68. Nakayama T, Hieshima K, Izawa D, Tatsumi Y, Kanamaru A, Yoshie O (2003) Cutting edge: profile of chemokine receptor expression on human plasma cells accounts for their efficient recruitment to target tissues. J Immunol 170(3):1136–1140

    PubMed  CAS  Google Scholar 

  69. Pellegrino A, Antonaci F, Russo F, Merchionne F, Ribatti D, Vacca A, Dammacco F (2004) CXCR3-binding chemokines in multiple myeloma. Cancer Lett 207(2):221–227

    Article  PubMed  CAS  Google Scholar 

  70. Menu E, Asosingh K, Indraccolo S, De Raeve H, Van Riet I, Van Valckenborgh E, Vande Broek I, Fujii N, Tamamura H, Van Camp B, Vanderkerken K (2006) The involvement of stromal derived factor 1 alpha in homing and progression of multiple myeloma in the 5TMM model. Haematologica 91(5):605–612

    PubMed  CAS  Google Scholar 

  71. Menu E, De Leenheer E, De Raeve H, Coulton L, Imanishi T, Miyashita K, Van Valckenborgh E, Van Riet I, Van Camp B, Horuk R, Croucher P, Vanderkerken K (2006) Role of CCR1 and CCR5 in homing and growth of multiple myeloma and in the development of osteolytic lesions: a study in the 5TMM model. Clin Exp Metastasis 23(5–6):291–300

    Article  PubMed  CAS  Google Scholar 

  72. Alsayed Y, Ngo H, Runnels J, Leleu X, Singha UK, Pitsillides CM, Spencer JA, Kimlinger T, Ghobrial JM, Jia X, Lu G, Timm M, Kumar A, Cote D, Veilleux I, Hedin KE, Roodman GD, Witzig TE, Kung AL, Hideshima T, Anderson KC, Lin CP, Ghobrial IM (2007) Mechanisms of regulation of CXCR4/SDF-1 (CXCL12) dependent migration and homing in multiple myeloma. Blood 109:2708–2717

    PubMed  CAS  Google Scholar 

  73. Giuliani N, Bonomini S, Romagnani P, Lazzaretti M, Morandi F, Colla S, Tagliaferri S, Lasagni L, Annunziato F, Crugnola M, Rizzoli V (2006) CXCR3 and its binding chemokines in myeloma cells: expression of isoforms and potential relationships with myeloma cell proliferation and survival. Haematologica 91(11):1489–1497

    PubMed  CAS  Google Scholar 

  74. Arendt BK, Velazquez-Dones A, Tschumper RC, Howell KG, Ansell SM, Witzig TE, Jelinek DF (2002) Interleukin 6 induces monocyte chemoattractant protein-1 expression in myeloma cells. Leukemia 16(10):2142–2147

    Article  PubMed  CAS  Google Scholar 

  75. Hideshima T, Chauhan D, Hayashi T, Podar K, Akiyama M, Gupta D, Richardson P, Munshi N, Anderson KC 2002) The biological sequelae of stromal cell-derived factor-1alpha in multiple myeloma. Mol Cancer Ther 1(7):539–544

    PubMed  CAS  Google Scholar 

  76. Parmo-Cabanas M, Bartolome RA, Wright N, Hidalgo A, Drager AM, Teixido J (2004) Integrin alpha4beta1 involvement in stromal cell-derived factor-1alpha-promoted myeloma cell transendothelial migration and adhesion: role of cAMP and the actin cytoskeleton in adhesion. Exp Cell Res 294(2):571–580

    Article  PubMed  CAS  Google Scholar 

  77. Gupta D, Treon SP, Shima Y, Hideshima T, Podar K, Tai YT, Lin B, Lentzsch S, Davies FE, Chauhan D, Schlossman RL, Richardson P, Ralph P, Wu L, Payvandi F, Muller G, Stirling DI, Anderson KC (2001) Adherence of multiple myeloma cells to bone marrow stromal cells upregulates vascular endothelial growth factor secretion: therapeutic applications. Leukemia 15:1950–1961

    PubMed  CAS  Google Scholar 

  78. Vanderkerken K, Asosingh K, Braet F, Van Riet I, Van Camp B (1999) Insulin-like growth factor-1 acts as a chemoattractant factor for 5T2 multiple myeloma cells. Blood 93(1):235–241

    PubMed  CAS  Google Scholar 

  79. Menu E, Kooijman R, Van Valckenborgh E, Asosingh K, Bakkus M, Van Camp B, Vanderkerken K (2004) Specific roles for the PI3K and the MEK-ERK pathway in IGF-1-stimulated chemotaxis, VEGF secretion and proliferation of multiple myeloma cells: study in the 5T33MM model. Br J Cancer 90(5):1076–1083

    Article  PubMed  CAS  Google Scholar 

  80. Qiang YW, Yao L, Tosato G, Rudikoff S (2004) Insulin-like growth factor I induces migration and invasion of human multiple myeloma cells. Blood 103(1):301–308

    Article  PubMed  CAS  Google Scholar 

  81. Qiang YW, Walsh K, Yao L, Kedei N, Blumberg PM, Rubin JS, Shaughnessy J Jr, Rudikoff S (2005) Wnts induce migration and invasion of myeloma plasma cells. Blood 106(5):1786–1793

    Article  PubMed  CAS  Google Scholar 

  82. Van Valckenborgh E, Bakkus M, Munaut C, Noel A, St Pierre Y, Asosingh K, Van Riet I, Van Camp B, Vanderkerken K (2002) Upregulation of matrix metalloproteinase-9 in murine 5T33 multiple myeloma cells by interaction with bone marrow endothelial cells. Int J Cancer 101:512–518

    Article  PubMed  CAS  Google Scholar 

  83. Vande Broek I, Asosingh K, Allegaert V, Leleu X, Facon T, Vanderkerken K, Van Camp B, Van Riet I (2004) Bone marrow endothelial cells increase the invasiveness of human multiple myeloma cells through upregulation of MMP-9: evidence for a role of hepatocyte growth factor. Leukemia 18(5):976–982

    Article  CAS  Google Scholar 

  84. Barille S, Akhoundi C, Collette M, Mellerin MP, Rapp MJ, Harousseau JL, Bataille R, Amiot M (1997) Metalloproteinases in multiple myeloma: production of matrix metalloproteinase-9 (MMP-9), activation of proMMP-2, and induction of MMP-1 by myeloma cells. Blood 90:1649–1655

    PubMed  CAS  Google Scholar 

  85. Asosingh K, Menu E, Van Valckenborgh E, Vande Broek I, Van Riet I, Van Camp B, Vanderkerken K (2002) Mechanisms involved in the differential bone marrow homing of CD45 subsets in 5T murine models of myeloma. Clin Exp Metastasis 19:583–591

    Article  PubMed  CAS  Google Scholar 

  86. Westermarck J, Kahari VM (1999) Regulation of matrix metalloproteinase expression in tumor invasion. FASEB J 13:781–792

    PubMed  CAS  Google Scholar 

  87. Nakamura T (1991) Structure and function of hepatocyte growth factor. Prog Growth Factor Res 3:67–85

    Article  PubMed  CAS  Google Scholar 

  88. Jiang Y, Xu W, Lu J, He F, Yang X (2001) Invasiveness of hepatocellular carcinoma cell lines: contribution of hepatocyte growth factor, c-met, and transcription factor Ets-1. Biochem Biophys Res Commun 286:1123–1130

    Article  PubMed  CAS  Google Scholar 

  89. Monvoisin A, Bisson C, Si-Tayeb K, Balabaud C, Desmouliere A, Rosenbaum J (2002) Involvement of matrix metalloproteinase type-3 in hepatocyte growth factor-induced invasion of human hepatocellular carcinoma cells. Int J Cancer 97:157–162

    Article  PubMed  CAS  Google Scholar 

  90. Borset M, Lien E, Espevik T, Helseth E, Waage A, Sundan A (1996) Concomitant expression of hepatocyte growth factor/scatter factor and the receptor c-Met in human myeloma cell lines. J Biol Chem 271:24655–24661

    Article  PubMed  CAS  Google Scholar 

  91. Derksen PW, de Gorter DJ, Meijer HP, Bende RJ, van Dijk M, Lokhorst HM, Bloem AC, Spaargaren M, Pals ST (2003) The hepatocyte growth factor/Met pathway controls proliferation and apoptosis in multiple myeloma. Leukemia 17:764–774

    Article  PubMed  CAS  Google Scholar 

  92. Derksen PW, Keehnen RM, Evers LM, van Oers MH, Spaargaren M, Pals ST (2002) Cell surface proteoglycan syndecan-1 mediates hepatocyte growth factor binding and promotes Met signaling in multiple myeloma. Blood 99:1405–1410

    Article  PubMed  CAS  Google Scholar 

  93. Vande Broek I, Leleu X, Schots R, Facon T, Vanderkerken K, Van Camp B, Van Riet I (2006) Clinical significance of chemokine receptor (CCR1, CCR2 and CXCR4) expression in human myeloma cells: the association with disease activity and survival. Haematologica 91(2):200–206

    PubMed  Google Scholar 

  94. Uchida S, Shimada Y, Watanabe G, Li ZG, Hong T, Miyake M, Imamura M (1999) Motility-related protein (MRP-1/CD9) and KAI1/CD82 expression inversely correlate with lymph node metastasis in oesophageal squamous cell carcinoma. Br J Cancer 79:1168–1173

    Article  PubMed  CAS  Google Scholar 

  95. Drucker L, Tohami T, Tartakover-Matalon S, Zismanov V, Shapiro H, Radnay J, Lishner M (2006) Promoter hypermethylation of tetraspanin members contributes to their silencing in myeloma cell lines. Carcinogenesis 27:197–204

    Article  PubMed  CAS  Google Scholar 

  96. Tohami T, Drucker L, Shapiro H, Radnay J, Lishner M (2007) Overexpression of tetraspanins affects multiple myeloma cell survival and invasive potential. FASEB J 21(3):691–699

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

The authors would like to thank Nicole Arras for secretarial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Van Riet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vande Broek, I., Vanderkerken, K., Van Camp, B. et al. Extravasation and homing mechanisms in multiple myeloma. Clin Exp Metastasis 25, 325–334 (2008). https://doi.org/10.1007/s10585-007-9108-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-007-9108-4

Keywords

Navigation