Skip to main content

Advertisement

Log in

Advances and challenges in climate modeling

  • Review Article
  • Published:
Climatic Change Aims and scope Submit manuscript

Abstract

In spite of the chaotic nature of the atmosphere and involvement of complex nonlinear dynamics, forecasting climate fluctuations over different timescales is feasible due to the interaction between the atmosphere and the slowly varying underlying surfaces. This review provides insights into climate predictions across subseasonal to decadal timescales and into making projections of future climate change. Different sources of uncertainty in climate predictions are discussed, including internal variability uncertainty, which is large for short-term predictions of up to a decade or two, model uncertainty for predictions at all timescales, and scenario uncertainty for climate change projections at the end of this century. Climate models have been significantly improved in recent decades, mostly through improved parameterization of unresolved processes and enhancement of the spatial resolution, while ensemble forecasting has also been developed to capture strong predictable signals. Future research should aim to reduce uncertainty in climate predictions, for example, through the application of high-resolution climate models. However, sub-grid-scale features would still be parameterized, underlining the need for further improvements in physical parameterizations to account for sub-grid-scale processes. There is also a need for improvement and extension of the current observing system, which will greatly advance understanding of the key processes and features in the climate system. The advanced observing system in the future will also be beneficial for more accurate representation of the initial state of the components of the climate system in order to obtain more accurate climate predictions. In spite of progress in model development, the spread of projected precipitation by different models under a specific radiative forcing of greenhouse gases is still large at the regional scale. Improving future projections of regional precipitation requires better accounting for internal variability and model uncertainty, which can be partly achieved by improvement and extension of the observing system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alessandri A, Borrelli A, Navarra A, Arribas A, Déqué M, Rogel P, Weisheimer A (2011) Evaluation of probabilistic quality and value of the ENSEMBLES multi-model seasonal forecasts: comparison with DEMETER. Mon Weather Rev 139:581–607

    Article  Google Scholar 

  • Alizadeh O, Lin Z (2021) Rapid Arctic warming and its link to the waviness and strength of the westerly jet stream over West Asia. Glob Planet Change 199:103,447

    Article  Google Scholar 

  • Alizadeh-Choobari O (2017) Contrasting global teleconnection features of the eastern Pacific and central Pacific El Niño events. Dyn Atmospheres Oceans 80:139–154

    Article  Google Scholar 

  • Alizadeh-Choobari O (2019) Dynamical downscaling of CSIRO-mk3.6 seasonal forecasts over Iran with the regional climate model version 4. Int J Climatol 39:3313–3322

    Article  Google Scholar 

  • Alizadeh-Choobari O, Adibi P (2019) Impacts of large-scale teleconnections on climate variability over Southwest Asia. Dyn Atmos Oceans 86:41–51

    Article  Google Scholar 

  • Alizadeh-Choobari O, Adibi P, Irannejad P (2018a) Impact of the El niño-southern Oscillation on the climate of Iran using ERA-Interim data. Clim Dyn 51:2897–2911

    Article  Google Scholar 

  • Alizadeh-Choobari O, Najafi MS (2018b) Climate variability in Iran in response to the diversity of the El Niño-Southern Oscillation. Int J Climatol 38:4239–4250

    Article  Google Scholar 

  • Alizadeh-Choobari O, Qadimi M, Marjani S (2019) Evaluation of 2-m temperature and precipitation products of the Climate Forecast System version 2 over Iran. Dyn Atmos Oceans 88:101,105

    Article  Google Scholar 

  • Almazroui M, Saeed F, Saeed S, Nazrul Islam M, Ismail M, Klutse NAB, Siddiqui MH (2020) Projected change in temperature and precipitation over africa from CMIP6. Earth Syst Environ 4:455–475

    Article  Google Scholar 

  • Anochi JA, de Almeida VA, de Campos Velho HF (2021) Machine learning for climate precipitation prediction modeling over South America. Remote Sens 13:2468

    Article  Google Scholar 

  • Arakawa A (1969) Parameterization of cumulus clouds. In: Proc. symp. on numerical weather prediction, Tokyo, Japan, WMO/International Union of Geodesy and Geophysics, 1-6

  • Baldwin MP, Gray LJ, Dunkerton TJ, Hamilton K, Haynes PH, Randel WJ, Holton JR, Alexander MJ, Hirota I, Horinouchi T, Jones DBA, Kinnersley JS, Marquardt C, Sato K, Takahashi M (2001) The quasi-biennial oscillation. Rev Geophys 39(2):179–229

    Article  Google Scholar 

  • Balmaseda MA, Fujii Y, Alve O, Lee T, Rienecker M, Rosati T, Stammer D, Xue Y, Freeland H, McPhaden MJ, Goddard L, Coelho C (2009) Role of the ocean observing system in an end-to-end seasonal forecasting system. OceanObs’09: Sustained Ocean Observations and Information for Society (Venice, Sept. 2009). In: Hall J, Harrison DE, Stammer D (eds), vol 2. ESA Publication WPP-306

  • Berner J, Achatz U, Batté L, Bengtsson L, Cámara A, Christensen HM, Colangeli M, Coleman DRB, Crommelin D, Dolaptchiev SI, Franzke CLE, Friederichs P, Imkeller P, Järvinen H, Juricke S, Kitsios V, Lott F, Lucarini V, Mahajan S, Palmer TN, Penland C, Sakradzija M, von Storch JS, Weisheimer A, Weniger M, Williams PD, Yano JI (2017) Stochastic parameterization: towards a new view of weather and climate models. Bull Amer Meteorol Soc 98:565–588

    Article  Google Scholar 

  • Bjerknes J (1966) A possible response of the atmospheric Hadley circulation to equatorial anomalies of ocean temperature. Tellus 18:820–829

    Article  Google Scholar 

  • Brayshaw DJ (2018) Weather, Climate and the Nature of Predictability. In: Troccoli A (eds) Weather & Climate Services for the Energy Industry. Palgrave Macmillan, Cham. https://doi.org/10.1007/978-3-319-68418-5_6

  • Cane MA, Zebiak SE, Dolan SC (1986) Experimental forecasts of El Niño. Nature 321:827–832

    Article  Google Scholar 

  • Carson DJ (1998) Seasonal forecasting. Q J R Meteorol Soc 124:1–26

    Article  Google Scholar 

  • Charney JG, Shukla J (1981) Predictability of monsoons. In: Lighthill SJ, Pearce RP (eds) Monsoon dynamics. Cambridge University Press, Cambridge, pp 99–109

  • Charney JG, Fleagle RG, Lally VE, Riehl H, Wark DQ (1966) The feasibility of a global observation and analysis experiment. Bull Am Meteorol Soc 47:200–220

    Article  Google Scholar 

  • Chen J, Brissette FP, Chaumont DMb (2007) Finding appropriate bias correction methods in downscaling precipitation for hydrologic impact studies over North America. Water Resour Res 49:4187–4205

    Article  Google Scholar 

  • Chen J, Brissette FP, Caya D (2020) Remaining error sources in bias-corrected climate model outputs. Clim Change 162(2):563–581

    Article  Google Scholar 

  • Cheng WYY, Liu Y, Bourgeois A, Wu Y, Haupt SE (2017) Short-term wind forecast of a data assimilation/weather forecasting system with wind turbine anemometer measurement assimilation. Renew Energy 107:340–351

    Article  Google Scholar 

  • Christensen JH, Boberg F, Christensen OB, Lucas-Picher P (2020) In the need for bias correction of regional climate change projections of temperature and precipitation. Geophys Res Lett 35(20):L20,709

    Article  Google Scholar 

  • Coindreau O, Hourdin F, Haeffelin M, Mathieu A, Rio C (2007) Assessment of physical parameterizations using a global climate model with stretchable grid and nudging. Mon Weather Rev 135:1474–1489

    Article  Google Scholar 

  • Cox P, Stephenson D (2007) A changing climate for prediction. Science 317:207–208

    Article  Google Scholar 

  • Dawson A, Palmer TN (2015) Simulating weather regimes: impact of model resolution and stochastic parameterization. Clim Dyn 44:2177–2193

    Article  Google Scholar 

  • Dawson A, Matthews AJ, Stevens DP (2011) Rossby wave dynamics of the North Pacific extra-tropical response to El Niño: importance of the basic state in coupled GCMs. Clim Dyn 37:391–405

    Article  Google Scholar 

  • Deser C, Phillips AS, Hurrell JW (2004) Pacific interdecadal climate variability: linkages between the tropics and the North Pacific during boreal winter since 1900. J Clim 17:3109–3124

    Article  Google Scholar 

  • Dickinson R, Errico R, Giorgi F, Bates G (1989) A regional climate model for the western United States. Clim Change 15:383–422

    Article  Google Scholar 

  • Diro GT, Tompkins AM, Bi X (2012) Dynamical downscaling of ECMWF ensemble seasonal forecasts over East Africa with RegCM3. J Geophys Rese 117:D16,103

    Google Scholar 

  • Doblas-Reyes FJ, Andreu-Burillo I, Chikamoto Y, García-Serrano J, Guemas V, Kimoto M, Mochizuki T, Rodrigues LRL, van Oldenborgh GJ (2013a) Initialized near-term regional climate change prediction. Nat Commun 4:1715–1715

    Article  Google Scholar 

  • Doblas-Reyes FJ, García-Serrano J, Lienert F, Biescas AP, Rodrigues LRL (2013b) Seasonal climate predictability and forecasting: status and prospects. Wiley Interdisciplinary Rev: Clim Change 4:245–268

    Google Scholar 

  • Dunstone NJ, Smith DM (2010) Impact of atmosphere and sub-surface ocean data on decadal climate prediction. Geophys Res Lett 37:L02,709

    Article  Google Scholar 

  • Edwards PN (2011) History of climate modeling. Wiley Interdiscip Rev: Clim Change 2:128–139

    Google Scholar 

  • Emery W, Lee G, Magaard L (1984) Geographic and seasonal distributions of Brunt-Väisälä frequency and Rossby radii in the North Pacific and North Atlantic. J Phys Oceanogr 14:249–317

    Article  Google Scholar 

  • Enfield DB, Mestas-Nuñez AM, Trimble PJ (2001) The Atlantic Multidecadal Oscillation and its relation to rainfall and river flows in the continental U.S. Geophys Res Lett 28:2077–2080

    Article  Google Scholar 

  • Feldstein SB, Franzke CLE (2017) Atmospheric teleconnection patterns. In: Franzke C, O’Kane T (eds) Nonlinear and stochastic climate dynamics. https://doi.org/10.1017/9781316339251.004. Cambridge University Press, pp 54–104

  • Foley AM (2010) Uncertainty in regional climate modelling: a review. Prog Phys Geogr 34(5):647–670

    Article  Google Scholar 

  • Fotso-Kamga G, Fotso-Nguemo TC, Diallo I, Yepdo ZD, Pokam WM, Vondou DA, Lenouo A (2020) An evaluation of COSMO-CLM regional climate model in simulating precipitation over Central Africa. Int J Climatol 40:2891–2912

    Article  Google Scholar 

  • Franzke CLE, O’Kane TJ, Berner J, Williams PD, Lucarini V (2015) Stochastic climate theory and modeling. WIREs Clim Change 6:63–78

    Article  Google Scholar 

  • Gao X, Xu Y, Zhao Z, Pal JS, Giorgi F (2006) On the role of resolution and topography in the simulation of East Asia precipitation. Theor Appl Climatol 86:173–185

    Article  Google Scholar 

  • Garuma GF (2018) Review of urban surface parameterizations for numerical climate models. Urban Clim 24:830–851

    Article  Google Scholar 

  • Gettelman A, Rood RB (2016) Demystifying climate models-a users guide to Earth system models. Springer, Berlin. 274pp

    Google Scholar 

  • Giorgi F, Bates GT (1989) The climatological skill of a regional model over complex terrain. Mon Weather Rev 117:2325–2347

    Article  Google Scholar 

  • Giorgi F, Gutowski WJ (2015) Regional dynamical downscaling and the CORDEX initiative. Ann Rev Environ Resour 40:467–490

    Article  Google Scholar 

  • Guo Q, Chen J, Zhang XJ, Shen M, Chen HSg (2019) A new two-stage multivariate quantile mapping method for bias correcting climate model outputs. Clim Dyn 53:3603–3623

    Article  Google Scholar 

  • Hannachi A, Straus DM, Franzke CLE, Corti S, Woollings T (2017) Low-frequency nonlinearity and regime behavior in the Northern Hemisphere extratropical atmosphere. Rev Geophys 55:199–234

    Article  Google Scholar 

  • Hawkins E, Sutton R (2009) The potential to narrow uncertainty in regional climate predictions. Bull Amer Meteor Soc 90:1095–1107

    Article  Google Scholar 

  • He J, Kirtman B, Soden BJ, Vecchi GA, Zhang H, Winton M (2018) Impact of ocean eddy resolution on the sensitivity of precipitation to CO2 increase. Geophys Res Lett 45:7194–7203

    Article  Google Scholar 

  • Huntingford C, Jeffers ES, Bonsall MB, Christensen HM, Lees T, Yang H (2019) Machine learning and artificial intelligence to aid climate change research and preparedness. Environ Res Lett 14:124,007

    Article  Google Scholar 

  • Hurrel J (2008) Decadal climate prediction: challenges and opportunities. J Phys Conf Ser 125:012,018

    Article  Google Scholar 

  • Hurrel J, Meehl GA, Bader D, Delworth TL, Kirtman B, Wielicki B (2009) A unified modeling approach to climate system prediction. Amer Meteorol Soc 90:1819–1832

    Article  Google Scholar 

  • Jakob C (2010) Accelerating progress in global atmospheric model development through improved parameterizations: challenges, opportunities, and strategies. Bull Am Meteorol Soc 91:869–876

    Article  Google Scholar 

  • Jin C, Wang B, Liu J, Ning L, Yan M (2019) Decadal variability of northern Asian winter monsoon shaped by the 11-year solar cycle. Clim Dyn 53:6559–6568

    Article  Google Scholar 

  • Jones GS, Gregory JM, Stott PA, Tett SFB, Thorpe R (2005) An AOGCM simulation of the climate response to a volcanic super-eruption. Clim Dyn 25:725–738

    Article  Google Scholar 

  • Joshi MM, Gregory JM, Webb MJ, Sexton DMH, Johns TC (2008) Mechanisms for the land/sea warming contrast exhibited by simulations of climate change. Clim Dyn 30:455–465

    Article  Google Scholar 

  • Judt F (2020) Atmospheric predictability of the tropics, middle latitudes, and polar regions explored through global storm-resolving simulations. J Atmos Sci 77:257–276

    Article  Google Scholar 

  • Kalnay E (2002) Atmospheric modeling, data assimilation and predictability. Cambridge University Press, https://doi.org/10.1017/CBO9780511802270

  • Keshtgar B, Alizadeh-Choobari O, Irannejad P (2020) Seasonal and interannual variations of the intertropical convergence zone over the Indian Ocean based on an energetic perspective. Clim Dyn 54:3627–3639

    Article  Google Scholar 

  • Kirtman BP, Min D (2009) Multimodel ensemble ENSO prediction with CCSM and CFS. Mon Wea Rev 137:2908–2930

    Article  Google Scholar 

  • Kirtman BP, Bitz C, Bryan F, Collins W, Dennis J, Hearn N, Kinter IIIJL, Loft R, Rousset C, Siqueira L, Stan C, Tomas R, Vertenstein M (2012) Impact of ocean model resolution on CCSM climate simulations. Clim Dyn 39:1303–1328

    Article  Google Scholar 

  • Knutti R, Furrer R, Tebaldi C, Crmak J, Meehl GA (2010) Challenges in combining projections from multiple climate models. J Clim 23:2739–2758

    Article  Google Scholar 

  • Knutti R, Sedláček J, Sanderson BM, Lorenz R, Fischer EM, Eyring V (2017) A climate model projection weighting scheme accounting for performance and interdependence. Geophys Res Lett 44:1909–1918

    Google Scholar 

  • Krishnamurthy V (2019) Predictability of weather and climate. Earth Space Sci 6:1043–1056

    Article  Google Scholar 

  • Krishnamurti TN, Kumar V, Simon A, Bhardwaj A, Ghosh T, Ross R (2016) A review of multimodel superensemble forecasting for weather, seasonal climate, and hurricanes. Rev Geophys 54:336–377

  • Landman WA, Kgatuke MJ, Mbedzi M, Beraki A, Bartman A, Ad Piesanie (2009) Performance comparison of some dynamical and empirical downscaling methods for South Africa from a seasonal climate modelling perspective. Int J Climatol 29:1535–1549

    Article  Google Scholar 

  • Landsberg HE (1981) The urban climate, vol 28. Academic Press, New York

  • Lawrence DM, Fisher RA, Koven CD, Oleson KW, Swenson SC, Bonan G, Collier N, Ghimire B, van Kampenhout L, Kennedy D, Kluzek E, Lawrence PJ, Li F, Li H, Lombardozzi D, Riley WJ, Sacks WJ, Shi M, Vertenstein M, Wieder WR, Xu C, Ali AA, Badger AM, Bisht G, van den Broeke M, Brunke MA, Burns SP, Buzan J, Clark M, Craig A, Dahlin K, wniak B, Fisher JB, Flanner M, Fox AM, Gentine P, Hoffman F, Keppel-Aleks G, Knox R, Kumar S, Lenaerts J, Leung LR, Lipscomb WH, Lu Y, Pandey A, Pelletier JD, Perket J, Randerson JT, Ricciuto DM, Sanderson BM, Slater A, Subin ZM, Tang J, Thomas RQ, Martin MV, Zeng X (2019) The community land model version 5: description of new features, benchmarking, and impact of forcing uncertainty. J Adv Model Earth Syst 11:4245–4287

    Article  Google Scholar 

  • Lin H, Derome J (2003) The atmospheric response to north atlantic SST anomalies in seasonal prediction experiments. Tellus A 55:193–207

  • Lock AP, Brown AR, Bush MR, Martin GM, Smith RNB (2000) A new boundary layer mixing scheme. Part I: scheme description and single-column model tests. Mon Wea Rev 128:3187–3199

    Article  Google Scholar 

  • Lorenz EN (1963a) Deterministic nonperiodic flow. J Atmos Sci 20:130–141

    Article  Google Scholar 

  • Lorenz EN (1963b) The predictability of hydrodynamic flow. Ann NY Acad Sci 25:409–432

    Google Scholar 

  • Lorenz EN (1964) The problem of deducing the climate from the governing equations. Tellus 16:1–11

    Article  Google Scholar 

  • Lorenz EN (1965) A study of the predictability of a 28-variable atmospheric model. Tellus 17:321–333

    Article  Google Scholar 

  • Lorenz EN (1969) Atmospheric predictability as revealed by naturally occurring analogues. J Atmos Sci 26:636–646

    Article  Google Scholar 

  • Lorenz EN (1982) Atmospheric predictability experiments with a large numerical model. Tellus 34(6):505–513

    Article  Google Scholar 

  • Lorenz EN (1984) Some aspects of atmospheric predictability. In: Burridge DM, Kallen E (eds) Problems and prospects in long and medium rage weather forecasting. Springer, Berlin, pp 1–20

  • Madden RA, Julian PR (1971) Detection of a 40-50 day oscillation in the zonal wind in the tropical Pacific. J Atmos Sci 28:702–708

    Article  Google Scholar 

  • Manabe S, Bryan K (1969) Climate calculations with a combined ocean-atmosphere model. J Atmos Sci 26:786–789

    Article  Google Scholar 

  • Mantua NJ, Hare SR, Zhang Y, Wallace JM, Francis RC (1997) A Pacific interdecadal climate oscillation with impacts on salmon production. Bull Amer Meteor Soc 78:1069–1079

    Article  Google Scholar 

  • Maraun D, Wetterhall F, Ireson AM et al (2010) Precipitation downscaling under climate change: recent developments to bridge the gap between dynamical models and the end user. Rev Geophys 48:RG3003

  • Mariotti A, Ruti PM, Rixen M (2018) Progress in subseasonal to seasonal prediction through a joint weather and climate community effort. npjClim Atmos Sci 1(1):1–4

  • Marjani S, Alizadeh-Choobari O, Irannejad P (2019) Frequency of extreme El Niño and La Niña events under global warming. Clim Dyn 53:5799–5813

    Article  Google Scholar 

  • Marshall AG, Scaife AA (2010) Improved predictability of stratospheric sudden warming events in an atmospheric general circulation model with enhanced stratospheric resolution. J Geophys Res 115:D16,114

    Article  Google Scholar 

  • Martin GM, Milton SF, Senior CA, Brooks ME, Ineson S, Reichler T, Kim J (2010) Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. J Clim 23:5933–5957

  • Maslin M, Austin P (2012) Climate models at their limit? Nature 486(7402):183–184

    Article  Google Scholar 

  • Masui T, Matsumoto K, Hijioka Y, Kinoshita T, Nozawa T, Ishiwatari S, Kato E, Shukla PR, Yamagata Y, Kainuma M (2011) An emission pathway for stabilization at 6 W m− 2 radiative forcing. Clim Change 109(1):59–76

    Article  Google Scholar 

  • Mauritzen C, Zivkovic T, Veldore V (2017) On the relationship between climate sensitivity and modelling uncertainty. Tellus A 69:765

    Article  Google Scholar 

  • McCormick MP, Thomason LW, Trepte CR (1995) Atmospheric effects of the Mt. Pinatubo eruption. Nature 373:399–404

    Article  Google Scholar 

  • McFarlane N (2011) Parameterizations: representing key processes in climate models without resolving them. WIREs Clim Change 2:482–497

    Article  Google Scholar 

  • McWilliams J (2007) Irreducible imprecision in atmospheric and oceanic simulations. Proc Natl Acad Sci 104:8709

  • Meah N (2019) Climate uncertainty and policy making-what do policy makers want to know? Reg Environ Change 19(6):1611–1621

    Article  Google Scholar 

  • Meehl GA, Goddard L, Murphy J, Stouffer RJ, Boer G, Danabasoglu G, Dixon K, Giorgetta MA, Greene AM, Hawkins E, Hegerl G, Karoly D, Keenlyside N, Kimoto M, Kirtman B, Navarra A, Pulwarty R, Smith D, Stammer D, Stockdale T (2009) Decadal prediction: can it be skillful? Bull Am Meteorol Soc 90(10):1467–1485

    Article  Google Scholar 

  • Meehl GA, Goddard L, Boer G, Burgman R, Branstator G, Cassou C, Corti S, Danabasoglu G, Doblas-Reyes F, Hawkins E, Karspeck A, Kimoto M, Kumar A, Matei D, Mignot J, Msadek R, Navarra A, Pohlmann H, Rienecker M, Rosati T, Schneider E, Smith D, Sutton R, Teng H, van Oldenborgh GJ, Vecchi G, Yeager S (2014) Decadal climate prediction: an update from the trenches. Bull Am Meteorol Soc 95:243–267

    Article  Google Scholar 

  • Meehl GA, Richter JH, Teng H, Capotondi A, Cobb K, Doblas-Reyes F, Donat MG, England MH, Fyfe JC, Han W, Kim H, Kirtman BP, Kushnir Y, Lovenduski NS, Mann ME, Merryfield WJ, Nieves V, Pegion K, Rosenbloom N, Sanchez SC, Scaife AA, Smith D, Subramanian AC, Sun L, Thompson D, Ummenhofer CC, Xie SP (2021) Initialized Earth system prediction from subseasonal to decadal timescales. Nat Rev Earth Environ 2:340–357

    Article  Google Scholar 

  • Mendoza PA, Rajagopalan B, Clark MP, Ikeda K, Rasmussen RM (2015) Statistical postprocessing of high resolution regional climate model output. Mon Weather Rev 143:1533–1553

  • Ménégoz M, Bilbao R, Bellprat O, Guemas V, Doblas-Reyes FJ (2018) Forecasting the climate response to volcanic eruptions: prediction skill related to stratospheric aerosol forcing. Environ Res Lett 13:064,022

  • Merryfield WJ, Baehr J, Batté L, Becker EJ, Butler AH, Coelho CAS, Danabasoglu G, Dirmeyer PA, Doblas-Reyes FJ, Domeisen DIV, Ferranti L, Ilynia T, Kumar A, Müller W A, Rixen M, Robertson AW, Smith DM, Takaya Y, Tuma M, Vitart F, White CJ, Alvarez MS, Ardilouze C, Attard H, Baggett C, Balmaseda MA, Beraki AF, Bhattacharjee PS, Bilbao R, de Andrade FM, DeFlorio MJ, Díaz LB, Ehsan MA, Fragkoulidis G, Grainger S, Green BW, Hell MC, Infanti JM, Isensee K, Kataoka T, Kirtman BP, Klingaman NP, Lee JY, Mayer K, Mckay R, Mecking JV, Miller DE, Neddermann N, Justin NGCh, OssÓ A, Pankatz K, Peatman S, Pegion K, Perlwitz J, Recalde-Coronel GC, Reintges A, Renkl C, Solaraju-Murali B, Spring A, Stan C, Sun YQ, Tozer CR, Vigaud N, Woolnough S, Yeager S (2020) Current and emerging developments in subseasonal to decadal prediction. Bull Amer Meteor Soc 101(6):E869–E896

    Article  Google Scholar 

  • Min SK, Hense A (2006) A Bayesian approach to climate model evaluation and multi-model averaging with an application to global mean surface temperatures from IPCC AR4 coupled climate models. Geophys Res Lett 33:L08,708

    Article  Google Scholar 

  • Moslemzadeh E, Irannejad P, Alizadeh-Choobari O (2019) Impacts of global warming on the surface water balance components in Iran as simulated by regCM4. Int J Climatol 39:2646–2658

  • Motesharrei S, Rivas J, Kalnay E, Asrar GR, Busalacchi AJ, Cahalan RF, Cane MA, Colwell RR, Feng K, Franklin RS, Hubacek K, Miralles-Wilhelm F, Miyoshi T, Ruth M, Sagdeev R, Shirmohammadi A, Shukla J, Srebric J, Yakovenko VM, Zeng N (2016) Modeling sustainability: population, inequality, consumption, and bidirectional coupling of the Earth and Human Systems. Natl Sci Rev 3:470–494

  • Mpelasoka FS, Chiew FHS (2009) Influence of rainfall scenario construction methods on runoff projections. J Hydrometeorol 10:1168–1183

    Article  Google Scholar 

  • Neggers RAJ (2009) A dual mass flux framework for boundary layer convection. Part II: Clouds. J Atmos Sci 66:1489–1506

    Article  Google Scholar 

  • Oke TR (1987) Boundary Layer Climates, 2nd edn. Methuen, London, pp 435

  • van Oldenborgh GJ, Balmaseda MA, Ferranti L, Stockdale TN, Anderson DLT (2005) Did the ECMWF seasonal forecast model outperform statistical ENSO forecast models over the last 15 years? J Clim 18:3240–3249

    Article  Google Scholar 

  • O’Neill BC, Carter TR, Ebi K, Harrison PA, Kemp-Benedict E, Kok K, Kriegler E, Preston BL, Riahi K, Sillmann J, van Ruijven BJ, van Vuuren D, Carlisle D, Conde C, Fuglestvedt J, Green C, Hasegawa T, Leininger J, Monteith S, Pichs-Mauga R (2020) Achievements and needs for the climate change scenario framework. Nat Clim Change 10:1074–1084

    Article  Google Scholar 

  • Palmer TN (1993) Extended-range atmospheric prediction and the Lorenz model. Bull Am Meteorol Soc 74:49–65

    Article  Google Scholar 

  • Palmer TN, Anderson DLT (1994) The prospects for seasonal forecasting-a review paper. Q J R Meteorol Soc 120(518):755–793

    Google Scholar 

  • Palmer TN, Shutts GJ, Hagedorn R, Doblas-Reyes FJ, Jung T, Leutbecher M (2005) Representing model uncertainty in weather and climate prediction. Ann Rev Earth Planet Sci 33(1):163–193

    Article  Google Scholar 

  • Park C, Park C, Min SK, Min SK, Lee D, Lee D, Cha DH, Cha DH, Suh MS, Suh MS, Kang HS, Kang HS, Hong SY, Hong SY, Lee DK, Lee DK, Baek HJ, Baek HJ, Boo KO, Boo KO, Kwon WT, Kwon WT (2016) Evaluation of multiple regional climate models for summer climate extremes over East Asia. Clim Dyn 46:2469–2486

    Article  Google Scholar 

  • Penny SG, Hamill TM (2017) Coupled data assimilation for integrated Earth system analysis and prediction. Bull Amer Meteor Soc 98:ES169–ES172

    Article  Google Scholar 

  • Penny SG, Bach E, Bhargava K, Chang CC, Da C, Sun L, Yoshida T (2019) Strongly coupled data assimilation in multiscale media: experiments using a quasi-geostrophic coupled model. J Adv Model Earth Syst 11:1803–1829

    Article  Google Scholar 

  • Pincus R, Barker HW, Morcrette JJ (2005) A fast, flexible, approximate technique for computing radiative transfer in inhomogeneous cloud fields. J Geophys Res 108:4376

    Google Scholar 

  • Prodhomme C, Batté L, Massonnet F, Davini P, Bellprat O, Guemas V, Doblas-Reyes FJ (2016) Benefits of increasing the model resolution for the seasonal forecast quality in EC-earth. J Clim 29(24):9141–9162

    Article  Google Scholar 

  • Qadimi M, Alizadeh O, Irannejad P (2021) Impacts of the El Niño-Southern Oscillation on the strength and duration of the Indian summer monsoon. Meteorol Atmos Phys. Meteorol Atmos Phys 133:553–564, https://doi.org/10.1007/s00,703--020--00,767--w

  • Qiu Y, Hu Q, Zhang C (2017) WRF simulation and downscaling of local climate in Central Asia. Int J Climatol 37:513–528

  • Raisanen J (2001) C02-induced climate change in CMIP2 experiments: quantification of agreement and role of internal variability. J Clim 14:2088–2104

    Article  Google Scholar 

  • Rajczak J, Kotlarski S, Schär C (2016) Does quantile mapping of simulated precipitation correct for biases in transition probabilities and spell lengths? J Clim 29:1605–1615

    Article  Google Scholar 

  • Reed RJ, Campbell WJ, Rasmussen LA, Rogers DG (1961) Evidence of the downward-propagating annual wind reversal in the equatorial stratosphere. J Geophys Res 66:813–818

    Article  Google Scholar 

  • Riahi K, Rao S, Krey V, Cho C, Chirkov V, Fischer G, Kindermann G, Nakicenovic N, Rafaj P (2011) RCP 8.5-A scenario of comparatively high greenhouse gas emissions. Clim Change 109:33–57

  • Riahi K, van Vuuren DP, Kriegler E, Edmonds J, O’Neill BC, Fujimori S, Bauer N, Calvin K, Dellink R, Fricko O, Lutz W, Popp A, Cuaresma JC, KC S, Leimbach M, Jiang L, Kram T, Rao S, Emmerling J, Ebi K, Hasegawa T, Havlik P, Humpenöder F, Da Silva LA, Smith S, Stehfest E, Bosetti V, Eom J, Gernaat D, Masui T, Rogelj J, Strefler J, Drouet L, Krey V, Luderer G, Harmsen M, Takahashi K, Baumstark L, Doelman JC, Kainuma M, Klimont Z, Marangoni G, Lotze-Campen H, Obersteiner M, Tabeau A, Tavoni M (2017) The shared socioeconomic pathways and their energy, land use, and greenhouse gas emissions implications: an overview. Glob Environ Change 42:153–168

    Article  Google Scholar 

  • Roelich K, Giesekam J (2019) Decision making under uncertainty in climate change mitigation: introducing multiple actor motivations, agency and influence. Clim Policy 19(2):175–188

    Article  Google Scholar 

  • Saji NH, Goswami BN, Vinayachandran PN, Yamagata T (1999) A dipole mode in the tropical Indian Ocean. Nature 401:360–363

    Article  Google Scholar 

  • Satoh M, Stevens B, Judt F, Khairoutdinov M, Lin SJ, Putman WM, Düben P (2019) Global cloud-resolving models. Curr Clim Change Rep 5:172–184

  • Scaife AA, Knight JR, Vallis GK, Folland CK (2005) A stratospheric influence on the winter NAO and North Atlantic surface climate. Geophy Res Lett 32:L18,715

    Article  Google Scholar 

  • Scaife AA, Copsey D, Gordon C, Harris C, Hinton T, Keeley S, O’Neill A, Roberts M, Williams K (2011) Improved Atlantic winter blocking in a climate model. Geophy Res Lett 38:L23,703

    Article  Google Scholar 

  • Schepen A, Wang QJ, Robertson DE (2012) Combining the strengths of statistical and dynamical modeling approaches for forecasting Australian seasonal rainfall. J Geophys Res 117:D20

    Google Scholar 

  • Scherhag R (1952) Die explosionsartigen stratospherenerwarmingen des spatwinters 1951/1952 (the explosive warmings in the stratosphere of the late winter 1951/1952). Ber Dtsch Wetterdienstes US Zone 38:51–63

    Google Scholar 

  • Schlesinger ME, Ramankutty N (1994) An oscillation in the global climate system of period 65-70 years. Nature 367:723–726

    Article  Google Scholar 

  • Schmidli J, Frei C, Vidale PL (2006) Downscaling from GCM precipitation: a benchmark for dynamical and statistical downscaling methods. Int J Climatol 26:679–689

    Article  Google Scholar 

  • Sellers PJ, Mintz Y, Sud YC, Dalcher A (1986) A simple biosphere model (SIB) for use within general circulation models. J Atmos Sci 43:505–531

  • Sharma D, Das Gupta A, Babel MS (2007) Spatial disaggregation of bias-corrected GCM precipitation for improved hydrologic simulation: Ping river basin, Thailand. Hydrol Earth Syst Sci 11:1373–1390

  • Shukla JKJ (2006) Predictability of seasonal climate variations a pedagogical review. In: Palmer T, Hagedorn R (eds) Predictability of weather and climate. Cambridge University Press, Cambridge

  • Sivareddy S, Paul A, Sluka T, Ravichandran M, Kalnay E (2017) The pre-Argo ocean reanalyses may be seriously affected by the spatial coverage of moored buoys. Sci Rep 7:46,685–46,685

  • Slingo J, Palmer T (2011) Uncertainty in weather and climate prediction. Phil Trans R Soc A 369:4751–4767

    Article  Google Scholar 

  • Smagorinsky J (1963) General circulation experiments with the primitive equations: I. The basic experiment. Mont Wea Rev 91:99–164

  • Smith DM, Cusack S, Colman AW, Folland CK, Harris GR, Murphy JM (2007) Improved surface temperature prediction for the coming decade from a global climate model. Science 317:769–799

    Article  Google Scholar 

  • Smith DM, Scaife AA, Kirtman BP (2012) What is the current state of scientific knowledge with regard to seasonal and decadal forecasting? Environ Res Lett 7:015,602

    Article  Google Scholar 

  • Smith LA, Stern N (2011) Uncertainty in science and its role in climate policy. Philos Trans Royal Soc A 369:4818–4841

  • Stainforth DA, Aina T, Christensen C, Collins M, Faull N, Frame DJ, Kettleborough JA, Knight S, Martin A, Murphy JM, Piani C, Sexton D, Smith LA, Spicer RA, Thorpe AJ, Allen MR (2005) Uncertainty in predictions of the climate response to rising levels of greenhouse gases. Nature 433:403–406

    Article  Google Scholar 

  • Stan C, Xu L, Fairfax George Mason Univ VUS (2014) Climate simulations and projections with a super-parameterized climate model. Environ Modell Softw 60:134–152

    Article  Google Scholar 

  • Stensrud DJ (2007) Parameterization schemes: keys to understanding numerical weather prediction models. Cambridge: Cambridge University Press, https://doi.org/10.1017/CBO9780511812590

  • Stensrud DJ, Coniglio MC, Knopfmeier KH, Clark AJ (2012) Climate Change Modeling Methodology, Chapter: Climate Predictions, Seasonal-to-Decadal. Springer New York Editors: Philip. J Rasch, 2119–2148

  • Stensrud DJ, Coniglio MC, Knopfmeier KH, Clark AJ (2015) Numerical Models: Model Physics Parameterization, 2nd edn. Elsevier Ltd, pp 167–180

  • Stevens B, Bony S (2013) What are climate models missing. Science 340:1053–1054

    Article  Google Scholar 

  • Stockdale T (1997) Coupled ocean-atmosphere forecast in the presence of climate drift. Mon Wea Rev 125:809–818

    Article  Google Scholar 

  • Sutton RT, Hodson DLR (2005) Atlantic Ocean forcing of North American and European summer climate. Science 309:115–118

    Article  Google Scholar 

  • Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93:485–498

    Article  Google Scholar 

  • Taylor PC, Cai M, Hu A, Meehl J, Washington W, Zhang GJ (2013) A decomposition of feedback contributions to Polar warming amplification. J Clim 26:7023–7043

    Article  Google Scholar 

  • Themeßl MJ, Gobiet A, GH (2011) Empirical-statistical downscaling and error correction of regional climate models and its impact on the climate change signal. Clim Change 112:449–468

  • Thomson AM, Calvin KV, Smith SJ, Kyle GP, Volke A, Patel P, Delgado-Arias S, Bond-Lamberty B, Wise MA, Clarke LE, Edmonds JA (2011) RCP4.5: a pathway for stabilization of radiative forcing by 2100. Clim Change 109:77–94

    Article  Google Scholar 

  • Tian B, Dong X (2020) The double-ITCZ bias in CMIP3, CMIP5, and CMIP6 models based on annual mean precipitation. Geophys Res Lett 47:e2020GL087,232

  • Timmermann SI, Aand AN, Kug JS, Jin FF, Cai W, Capotondi A, Cobb KM, Lengaigne M, McPhaden MJ, Stuecker MF, Stein K (2018) El Niño-Southern Oscillation complexity. Nature 559(7715):535–545

    Article  Google Scholar 

  • Tomita H, Satoh M (2004) A new dynamical framework of nonhydrostatic global model using the icosahedral grid. Fluid Dyn Res 34:357–400

  • Torma C, Giorgi F, Coppola E (2015) Added value of regional climate modeling over areas characterized by complex terrain-Precipitation over the Alps. J Geophys Res 120:3957–3972

    Article  Google Scholar 

  • Tracton MS, Kalnay E (1993) Operational ensemble prediction at the national meteorological center: practical aspects. Wea Forecasting 8:379–398

    Article  Google Scholar 

  • Trenberth KE, Caron JM (2000) The Southern Oscillation revisited: Sea level pressures, surface temperatures and precipitation. J Clim 13:4358–4365

    Article  Google Scholar 

  • Trenberth KE, Fasullo JT, Kiehl J (2009) Earth’s global energy budget. Bull Am Meteorol Soc 90(3):311–324

    Article  Google Scholar 

  • Troccoli A (2010) Review seasonal climate forecasting. Meteorol Appl 17:251–268

    Article  Google Scholar 

  • Turner AG, Inness PM, Slingo JM (2005) The role of the basic state in monsoon prediction. Q J R Meteorol Soc 131:781–804

    Article  Google Scholar 

  • Vannitsem S, Duan W (2020) On the use of near-neutral Backward Lyapunov Vectors to get reliable ensemble forecasts in coupled ocean-atmosphere systems. Clim Dyn 55:1125–1139

    Article  Google Scholar 

  • Volosciuk C, Maraun D, Vrac M, Widmann M (2017) A combined statistical bias correction and stochastic downscaling method for precipitation. Hydrol Earth Syst Sci 21:1693–1171

    Article  Google Scholar 

  • van Vuuren DP, Stehfest E, den Elzen MGJ, Kram T, van Vliet J, Deetman S, Isaac M, Goldewijk KK, Hof A, Beltran AM, Oostenrijk R, van Ruijven B (2011a) RCP2.6: exploring the possibility to keep global mean temperature increase below 2 C. Clim Change 109:95–116

    Article  Google Scholar 

  • van Vuuren DP, Edmonds J, Kainuma M, Riahi K, Thomson A, Hibbard K, Hurtt GC, Kram T, Krey V, Lamarque JF, Masui T, Meinshausen M, Nakicenovic N, Smith SJ, Rose SK (2011b) The representative concentration pathways: an overview. Clim Change 109:5–31

    Article  Google Scholar 

  • Walker GT (1923) Correlation in seasonal variations of weather, VIII, A preliminary study of world weather. Mem India Meteorol Dept 24:75–131

    Google Scholar 

  • Walker GT (1924) Correlation in seasonal variations of weather, IV, A further study of world weather. Mem India Meteorol Dept 24:275–332

    Google Scholar 

  • Walker GT, Bliss EW (1932) World weather v. Mem R Meteorol Soc 4:53–84

    Google Scholar 

  • Wang B, Lee JY, Kang IS, Shukla J, Park C, Kumar A, Schemm J, Cocke S, Kug J, Luo J, Zhou T, Wang B, Fu X, Yun W, Alves O, Jin EK, Kinter J, Kirtman B, Krishnamurti T, Lau NC, Lau W, Liu P, Pegion P, Rosati T, Schubert S, Stern W, Suarez M, Yamagata T (2009) Advance and prospectus of seasonal prediction: assessment of the APCC/CLiPAS 14-model ensemble retrospective seasonal prediction (1980-2004). Clim Dyn 33:93–117

    Article  Google Scholar 

  • Wang L, Ren HL, Zhu J, Huang B (2020) Improving prediction of two ENSO types using a multi-model ensemble based on stepwise pattern projection model. Clim Dyn 54:3229–3243

    Article  Google Scholar 

  • Warner TT (2011) Numerical weather and climate prediction. Cambridge University Press, p 526

  • Washington R, Downing TE (1999) Seasonal forecasting of African rainfall: prediction, responses and household food security. The Geographical J 165:255–274

  • Weatherhead EC, Wielicki BA, Ramaswamy V, Abbott M, Ackerman TP, Atlas R, Brasseur G, Bruhwiler L, Busalacchi AJ, Butler JH, Clack CTM, Cooke R, Cucurull L, Davis SM, English JM, Fahey DW, Fine SS, Lazo JK, Liang S, Loeb NG, Rignot E, Soden B, Stanitski D, Stephens G, Tapley BD, Thompson AM, Trenberth KE, Wuebbles D (2018) Designing the climate observing system of the future. Earth’s Future 6:80–102

  • Webster PJ, Moore AM, Loschnigg JP, Leben RR (1999) Coupled ocean-atmosphere dynamics in the Indian Ocean during 1997-98. Nature 401:356–360

    Article  Google Scholar 

  • Weigel AP, Liniger MA, Appenzeller C (2008) Can multimodel combination really enhance the prediction skill of probabilistic ensemble forecasts? Q J R Meteorol Soc 134:241–260

    Article  Google Scholar 

  • Weisheimer A, Palmer TN (2014) On the reliability of seasonal climate forecasts. J R Soc Interface 11:20131,162

  • Weisheimer A, Doblas-Reyes FJ, Palmer TN, Alessandri A, Arribas A, Déqué M, Keenlyside N, MacVean M, Navarra A, Rogel P (2009) ENSEMBLES: a new multi-model ensemble for seasonal-to-annual predictions-Skill and progress beyond DEMETER in forecasting tropical Pacific SSTs. Geophys Res Lett 36:L21,711

    Article  Google Scholar 

  • Wilby RL (1998) Statistical downscaling of daily precipitation using daily airflow and seasonal teleconnection indices. Clim Res 10:163–178

    Article  Google Scholar 

  • Wilby RL, Dawson CW, Barrow EM (2002) SDSM - a decision support tool for the assessment of regional climate change impacts. Environ Model Softw 17:145–157

    Article  Google Scholar 

  • Wu J, Jin FF (2021) Improving the MJO forecast of S2S operation models by correcting their biases in linear dynamics. Geophys Res Lett 48:e2020GL091,930

    Article  Google Scholar 

  • Wu R, Kirtman BP, van den Dool H (2009) An analysis of ENSO prediction skill in the CFS retrospective forecasts. J Clim 22:1801–1818

    Article  Google Scholar 

  • Yang T, Li H, Wang W, Xu C, Yu Z (2012) Statistical downscaling of extreme daily precipitation, evaporation, and temperature and construction of future scenarios. Hydrol Processes 26:3510–3523

    Article  Google Scholar 

  • Zaehle S, Tsigaridis K, Menon S, Bartlein PJ, Schurgers G, Korhola A, Kulmala M, Arneth A, Sorvari S, Feichter J, O’Donnell D, Vesala T, Harrison SP (2010) Terrestrial biogeochemical feedbacks in the climate system. Nat Geosci 3:525–532

  • Zhang C (2005) Madden-julian Oscillation. Rev Geophys 43:2004RG000,158

    Article  Google Scholar 

  • Zhang C (2013) Madden-julian Oscillation: bridging weather and climate. Bull Am Meteorol Soc 94:1849–1870

    Article  Google Scholar 

  • Zhang S (2011) A study of impacts of coupled model initial shocks and state-parameter optimization on climate prediction using a simple pycnocline prediction model. J Clim 24:6210–6226

    Article  Google Scholar 

  • Zhang S, Liu Z, Zhang X, Wu X, Han G, Zhao Y, Yu X, Liu C, Liu Y, Wu S, Lu F, Li M, Deng X (2020) Coupled data assimilation and parameter estimation in coupled ocean-atmosphere models: a review. Clim Dyn 54:5127–5144

    Article  Google Scholar 

  • Zhu J, Huang B, Kumar A, Kinter JL (2015) Seasonality in prediction skill and predictable pattern of tropical indian ocean SST. J Clim 28:7962–7984

  • Ziervogel G, Downing TE (2004) Stakeholder networks: improving seasonal climate forecasts. Clim Change 65:73–101

Download references

Acknowledgements

CMIP6 data used in this study to produce Figure 2 were obtained from https://esgf-node.llnl.gov/projects/cmip6/.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omid Alizadeh.

Ethics declarations

Competing interests

The author declares no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alizadeh, O. Advances and challenges in climate modeling. Climatic Change 170, 18 (2022). https://doi.org/10.1007/s10584-021-03298-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10584-021-03298-4

Keywords

Navigation