Skip to main content

Advertisement

Log in

Climate-driven Mediterranean fire hazard assessments for 2020–2100 on the light of past millennial variability

  • Published:
Climatic Change Aims and scope Submit manuscript

Abstract

In the Mediterranean basin, Corsica (French island) harbours among the best-preserved Mediterranean forest ecosystems. However, its high biodiversity could be threatened by the climate and disturbance-regime changes due to the global warming. This study aims (i) to estimate the future climate-related fire hazard in Corsica for the current century (2020–2100) based on two RCP scenarios (RCP4.5 and RCP8.5) and (ii) to compare the predicted trends with the entire Holocene period for which fire hazard has previously been assessed. An ensemble of future climate simulations from two IPCC RCP scenarios has been used to compute the Monthly Drought Code (MDC) and the Fire Season Length (FSL) and to assess the level of fire hazard. Here, we show that the MDC and the FSL would both strongly increase over the next decades due to the combined effect of temperature increase and precipitation decrease in the Corsica region. Moreover, the maximum Holocene FLS (7000 to 9000 years ago) will be reached (and even exceeded depending upon the scenario) after 2040. For the first time in the Holocene, we may be confronted to an increase in the number of fire-prone months driven by climate combined with many human-caused ignitions. This combination should increase the burned area from 15 to 140% according to scenarios. For the next 30 years, the game seems to be already played as both RCP scenarios resulted in similar increase in fire hazard in terms of drought and duration. It is thus mandatory to reconsider fire-management and fire-prevention policy to mitigate the future fire risk and its catastrophic consequences for ecosystems, population, and economy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

adapted from NOAA/Earth System Research Laboratory

Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and materials

Data can be made available on request.

References

  • Aguado I, Chuvieco E, Martin P, Salas J (2003) Assessment of forest fire danger conditions in southern Spain from NOAA images and meteorological indices. Int J Remote Sens 24:1653–1668

    Article  Google Scholar 

  • Ahlström A, Schurgers G, Arneth A, Smith B (2012) Robustness and uncertainty in terrestrial ecosystem carbon response to CMIP5 climate change projections. Environ Res Lett 7:044008

    Article  Google Scholar 

  • Ali AA, Blarquez O, Girardin MP et al (2012) Control of the multimillennial wildfire size in boreal North America by spring climatic conditions. Proc Natl Acad Sci 109:20966–20970

    Article  Google Scholar 

  • Amatulli G, Camia A, San-Miguel-Ayanz J (2013) Estimating future burned areas under changing climate in the EU-Mediterranean countries. Sci Total Environ 450:209–222

    Article  Google Scholar 

  • Anav A, Menut L, Khvorostyanov D, Vi̇ovy N, (2011) Impact of tropospheric ozone on the Euro-Mediterranean vegetation. Glob Change Biol 17:2342–2359. https://doi.org/10.1111/j.1365-2486.2010.02387.x

    Article  Google Scholar 

  • Barbero R, Abatzoglou JT, Pimont F, et al (2020) Attributing increases in fire weather to anthropogenic climate change over France. Climate, Land Use, and Fire: Can Models Inform Management? 527278832

  • Batllori E, Parisien M-A, Krawchuk MA, Moritz MA (2013) Climate change-induced shifts in fire for Mediterranean ecosystems: fire shifts in Mediterranean ecosystems. Glob Ecol Biogeogr 22:1118–1129. https://doi.org/10.1111/geb.12065

    Article  Google Scholar 

  • Bedia J, Herrera S, San Martín D et al (2013) Robust projections of Fire Weather Index in the Mediterranean using statistical downscaling. Clim Change 120:229–247

    Article  Google Scholar 

  • Bedia J, Herrera S, Camia A et al (2014) Forest fire danger projections in the Mediterranean using ENSEMBLES regional climate change scenarios. Clim Change 122:185–199

    Article  Google Scholar 

  • Beffa G, Pedrotta T, Colombaroli D et al (2016) Vegetation and fire history of coastal north-eastern Sardinia (Italy) under changing Holocene climates and land use. Veget Hist Archaeobot 25:271–289. https://doi.org/10.1007/s00334-015-0548-5

    Article  Google Scholar 

  • Berger A, Loutre MF (1991) Insolation values for the climate of the last 10 million years. Quatern Sci Rev 10:297–317. https://doi.org/10.1016/0277-3791(91)90033-Q

    Article  Google Scholar 

  • Beyer R, Krapp M, Manica A (2020) An empirical evaluation of bias correction methods for palaeoclimate simulations. Climate of the past 16:1493–1508. https://doi.org/10.5194/cp-16-1493-2020

    Article  Google Scholar 

  • Birks HJB, Line JM (1992) The use of rarefaction analysis for estimating palynological richness from Quaternary pollen-analytical data. The Holocene 2:1–10

    Article  Google Scholar 

  • Bowman DMJS, Balch JK, Artaxo P et al (2009) Fire in the earth system. Science 324:481–484. https://doi.org/10.1126/science.1163886

    Article  Google Scholar 

  • Brayshaw DJ, Hoskins B, Black E (2010) Some physical drivers of changes in the winter storm tracks over the North Atlantic and Mediterranean during the Holocene. Philosophical Transactions of the Royal Society a: Mathematical, Physical and Engineering Sciences 368:5185–5223. https://doi.org/10.1098/rsta.2010.0180

    Article  Google Scholar 

  • Broecker WS, Clark E (2003) Holocene atmospheric CO2 increase as viewed from the seafloor. Global Biogeochemical Cycles 17.https://doi.org/10.1029/2002GB001985

  • Chelli S, Maponi P, Campetella G et al (2015) Adaptation of the Canadian fire weather index to Mediterranean forests. Nat Hazards 75:1795–1810

    Article  Google Scholar 

  • Chylek P, Li J, Dubey MK et al (2011) Observed and model simulated 20th century Arctic temperature variability: Canadian earth system model CanESM2. Atmospheric Chemistry and Physics Discussions 11:22893–22907

    Google Scholar 

  • Conchon O (1986) Quaternary glaciations in Corsica. Quatern Sci Rev 5:429–432. https://doi.org/10.1016/0277-3791(86)90208-8

    Article  Google Scholar 

  • Costa H, de Rigo D, Durrant TH, San-Miguel-Ayanz J (2020) European wildfire danger and vulnerability under a changing climate

  • Costafreda-Aumedes S, Comas C, Vega-Garcia C (2018) Human-caused fire occurrence modelling in perspective: a review. Int J Wildland Fire 26:983–998. https://doi.org/10.1071/WF17026

    Article  Google Scholar 

  • Crucifix M (2016) Palinsol: insolation for palaeoclimate studies, R package version 0.93

  • Curt T, Borgniet L, Bouillon C (2013) Wildfire frequency varies with the size and shape of fuel types in southeastern France: implications for environmental management. J Environ Manage 117:150–161. https://doi.org/10.1016/j.jenvman.2012.12.006

    Article  Google Scholar 

  • Curt T, Fréjaville T, Lahaye S (2016) Modelling the spatial patterns of ignition causes and fire regime features in southern France: implications for fire prevention policy. Int J Wildland Fire 25:785. https://doi.org/10.1071/WF15205

    Article  Google Scholar 

  • Cuttelod A, García N, Malak DA, et al (2009) The Mediterranean: a biodiversity hotspot under threat. Wildlife in a Changing World–an analysis of the 2008 IUCN Red List of Threatened Species 89:104

  • Dee DP, Uppala SM, Simmons AJ et al (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597. https://doi.org/10.1002/qj.828

    Article  Google Scholar 

  • Dormoy I, Peyron O, Combourieu Nebout N et al (2009) Terrestrial climate variability and seasonality changes in the Mediterranean region between 15 000 and 4000 years BP deduced from marine pollen records. Climate of the past 5:615–632

    Article  Google Scholar 

  • Dupuy J, Fargeon H, Martin-StPaul N et al (2020) Climate change impact on future wildfire danger and activity in southern Europe: a review. Ann for Sci 77:35

    Article  Google Scholar 

  • Elia M, Giannico V, Lafortezza R, Sanesi G (2019) Modeling fire ignition patterns in Mediterranean urban interfaces. Stoch Environ Res Risk Assess 33:169–181. https://doi.org/10.1007/s00477-018-1558-5

    Article  Google Scholar 

  • Faggian P (2018) Estimating fire danger over Italy in the next decades. Euro-Mediterranean Journal for Environmental Integration 3:15

    Article  Google Scholar 

  • Fargeon H, Pimont F, Martin-StPaul N et al (2020) Projections of fire danger under climate change over France: where do the greatest uncertainties lie? Clim Change 160:479–493. https://doi.org/10.1007/s10584-019-02629-w

    Article  Google Scholar 

  • Feurdean A, Vannière B, Finsinger W et al (2020) Fire hazard modulation by long-term dynamics in land cover and dominant forest type in eastern and central Europe. Biogeosciences 17:1213–1230. https://doi.org/10.5194/bg-17-1213-2020

    Article  Google Scholar 

  • Forsyth GG, Van Wilgen BW (2008) The recent fire history of the table mountain national park and implications for fire management. Koedoe 50:3–9

    Article  Google Scholar 

  • Ganteaume A, Marielle J, Corinne L-M et al (2011) Effects of vegetation type and fire regime on flammability of undisturbed litter in Southeastern France. For Ecol Manage 261:2223–2231. https://doi.org/10.1016/j.foreco.2010.09.046

    Article  Google Scholar 

  • Gao X, Giorgi F (2008) Increased aridity in the Mediterranean region under greenhouse gas forcing estimated from high resolution simulations with a regional climate model. Global Planet Change 62:195–209. https://doi.org/10.1016/j.gloplacha.2008.02.002

    Article  Google Scholar 

  • Giannakopoulos C, Bindi M, Moriondo M, et al (2005) Climate change impacts in the Mediterranean resulting from a 2 C global temperature rise. A report for WWF

  • Giorgi F, Hewitson B, Arritt R, et al (2001) Regional climate information—evaluation and projections

  • Giorgi F, Francisco R (2000) Evaluating uncertainties in the prediction of regional climate change. Geophys Res Lett 27:1295–1298

    Article  Google Scholar 

  • Giorgi F, Lionello P (2008) Climate change projections for the Mediterranean region. Global Planet Change 63:90–104. https://doi.org/10.1016/j.gloplacha.2007.09.005

    Article  Google Scholar 

  • Giorgi F (2006) Climate change hot-spots. Geophysical research letters 33:

  • Girardin MP, Wotton BM (2009) Summer moisture and wildfire risks across Canada. J Appl Meteorol Climatol 48:517–533

    Article  Google Scholar 

  • Girardin MP, Ali AA, Carcaillet C et al (2013) Fire in managed forests of eastern Canada: Risks and options. For Ecol Manage 294:238–249

    Article  Google Scholar 

  • Hély C, Girardin MP, Ali AA, et al (2010) Eastern boreal North American wildfire risk of the past 7000 years: a model-data comparison. Geophysical Research Letters 37.https://doi.org/10.1029/2010GL043706

  • Hély C, Chaste E, Girardin MP, et al (2020) A Holocene perspective of vegetation controls on seasonal boreal wildfire sizes using numerical paleo-ecology. Front For Glob Change 3.https://doi.org/10.3389/ffgc.2020.511901

  • Keeley JE (2009) Fire intensity, fire severity and burn severity: a brief review and suggested usage. Int J Wildland Fire 18:116. https://doi.org/10.1071/WF07049

    Article  Google Scholar 

  • Kittel TGF, Giorgi F, Meehl GA (1997) Intercomparsion of regional biases and doubled CO2-sensitivity of coupled atmosphere-ocean general circulation model experiments. Clim Dyn 14:1–15

    Article  Google Scholar 

  • Lahaye S, Curt T, Fréjaville T et al (2018) What are the drivers of dangerous fires in Mediterranean France? Int J Wildland Fire 27:155–163

    Article  Google Scholar 

  • Lestienne M, Hély C, Curt T et al (2020a) Combining the Monthly Drought Code and paleoecological data to assess Holocene climate impact on Mediterranean fire regime. Fire 3:8. https://doi.org/10.3390/fire3020008

    Article  Google Scholar 

  • Lestienne M, Jouffroy-Bapicot I, Leyssenne D et al (2020b) Fires and human activities as key factors in the high diversity of Corsican vegetation. The Holocene 30:244–257. https://doi.org/10.1177/0959683619883025

    Article  Google Scholar 

  • Leys B, Finsinger W, Carcaillet C (2014) Historical range of fire frequency is not the Achilles’ heel of the Corsican black pine ecosystem. J Ecol 102:381–395

    Article  Google Scholar 

  • Lohman DJ, Bickford D, Sodhi NS (2007) The burning issue. Science 316:376–376

    Article  Google Scholar 

  • Magny M, de Beaulieu J-L, Drescher-Schneider R et al (2007) Holocene climate changes in the central Mediterranean as recorded by lake-level fluctuations at Lake Accesa (Tuscany, Italy). Quatern Sci Rev 26:1736–1758

    Article  Google Scholar 

  • Maraun D, Widmann M (2018) Statistical Downscaling and bias correction for climate research. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Médail F (2017) The specific vulnerability of plant biodiversity and vegetation on Mediterranean islands in the face of global change. Reg Environ Change 17:1775–1790

    Article  Google Scholar 

  • Médail F, Verlaque R (1997) Ecological characteristics and rarity of endemic plants from southeast France and Corsica: implications for biodiversity conservation. Biol Cons 80:269–281. https://doi.org/10.1016/S0006-3207(96)00055-9

    Article  Google Scholar 

  • Medail F, Quezel P (1997) Hot-spots analysis for conservation of plant biodiversity in the Mediterranean basin. Annals of the Missouri Botanical Garden 112–127

  • Meinshausen M, Smith SJ, Calvin K et al (2011) The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Clim Change 109:213. https://doi.org/10.1007/s10584-011-0156-z

    Article  Google Scholar 

  • Moriondo M, Good P, Durao R et al (2006) Potential impact of climate change on fire risk in the Mediterranean area. Climate Res 31:85–95

    Article  Google Scholar 

  • Mouillot F, Rambal S, Joffre R (2002) Simulating climate change impacts on fire frequency and vegetation dynamics in a Mediterranean-type ecosystem. Glob Change Biol 8:423–437

    Article  Google Scholar 

  • NOAA A (2011) NOAA study: Human-caused climate change a major factor in more frequent Mediterranean droughts. October

  • Pachauri RK, Reisinger A (2008) Climate change 2007. Synthesis report. Contribution of Working Groups I, II and III to the fourth assessment report, Intergovernmental Panel on Climate Change, Geneva (Switzerland)

  • Pachauri RK, Mayer L, Intergovernmental Panel on Climate Change (eds) (2015) Climate change 2014: synthesis report. Intergovernmental Panel on Climate Change, Geneva, Switzerland

  • Pausas JG (2004) Changes in fire and climate in the eastern Iberian Peninsula (Mediterranean basin). Clim Change 63:337–350

    Article  Google Scholar 

  • Planton S, Driouech F, Rhaz KE, Lionello P (2016) The climate of the Mediterranean regions in the future climate projections. In: The Mediterranean region under climate change, IRD Editions. pp 83–93

  • PNRC PNR de C (1983) Contribution à la connaissance des lacs d’altitudes de Corse

  • Reille M (1992) New pollen-analytical researches in Corsica: the problem of Quercus ilex L. and Erica arborea L., the origin of Pinus halepensis Miller forests. New Phytol 122:359–378

    Article  Google Scholar 

  • Reille M, Gamisans J, de BEAULIEU J-L, Andrieu V, (1997) The late-glacial at Lac de Creno (Corsica, France): a key site in the western Mediterranean basin. New Phytol 135:547–559. https://doi.org/10.1046/j.1469-8137.1997.00683.x

    Article  Google Scholar 

  • Reille M, Gamisans J, Andrieu-Ponel V, De Beaulieu J-L (1999) The Holocene at Lac de Creno, Corsica, France: a key site for the whole island. New Phytol 141:291–307

    Article  Google Scholar 

  • Remy CC, Hély C, Blarquez O, et al (2017) Different regional climatic drivers of Holocene large wildfires in boreal forests of northeastern America. Environmental Research Letters 12:035005

  • Renssen H, Seppä H, Crosta X et al (2012) Global characterization of the Holocene thermal maximum. Quatern Sci Rev 48:7–19. https://doi.org/10.1016/j.quascirev.2012.05.022

    Article  Google Scholar 

  • Riahi K, Rao S, Krey V, et al (2011) RCP 8.5—A scenario of comparatively high greenhouse gas emissions. Climatic Change 109:33. https://doi.org/10.1007/s10584-011-0149-y

  • Ruffault J, Martin-StPaul NK, Rambal S, Mouillot F (2013) Differential regional responses in drought length, intensity and timing to recent climate changes in a Mediterranean forested ecosystem. Clim Change 117:103–117. https://doi.org/10.1007/s10584-012-0559-5

    Article  Google Scholar 

  • Ruffault J, Curt T, Moron V et al (2020) Increased likelihood of heat-induced large wildfires in the Mediterranean Basin. Sci Rep 10:1–9

    Article  Google Scholar 

  • Sá ACL, Benali A, Fernandes PM et al (2017) Evaluating fire growth simulations using satellite active fire data. Remote Sens Environ 190:302–317. https://doi.org/10.1016/j.rse.2016.12.023

    Article  Google Scholar 

  • San Roman Sanz A, Fernandez C, Mouillot F, et al (2013) Long-term forest dynamics and land-use abandonment in the Mediterranean mountains, Corsica, France. Ecology and Society 18:

  • Shiogama H, Nozawa T, Emori S (2007) Robustness of climate change signals in near term predictions up to the year 2030: Changes in the frequency of temperature extremes. Geophys Res Lett 34.https://doi.org/10.1029/2007GL029318

  • Tedim F, Remelgado R, Borges C et al (2013) Exploring the occurrence of mega-fires in Portugal. For Ecol Manage 294:86–96

    Article  Google Scholar 

  • Thomson AM, Calvin KV, Smith SJ et al (2011) RCP4.5: a pathway for stabilization of radiative forcing by 2100. Climatic Change 109:77. https://doi.org/10.1007/s10584-011-0151-4

    Article  Google Scholar 

  • Valdes PJ, Armstrong E, Badger MPS et al (2017) The BRIDGE HadCM3 family of climate models: HadCM3@Bristol v1.0. Geoscientific Model Development 10:3715–3743. https://doi.org/10.5194/gmd-10-3715-2017

    Article  Google Scholar 

  • van der Kamp DW, Bürger G, Werner AT (2013) Evaluation of the Monthly Drought Code as a metric for fire weather in a region of complex terrain and un-certainties in future projections. Victoria: The Pacific Climate Impacts Consortium

  • Vannière B, Colombaroli D, Chapron E et al (2008) Climate versus human-driven fire regimes in Mediterranean landscapes: the Holocene record of Lago dell’Accesa (Tuscany, Italy). Quatern Sci Rev 27:1181–1196

    Article  Google Scholar 

  • Vannière B, Power MJ, Roberts N et al (2011) Circum-Mediterranean fire activity and climate changes during the mid-Holocene environmental transition (8500–2500 cal. BP). The Holocene 21:53–73. https://doi.org/10.1177/0959683610384164

    Article  Google Scholar 

  • Vannière B, Blarquez O, Rius D et al (2016) 7000-year human legacy of elevation-dependent European fire regimes. Quatern Sci Rev 132:206–212. https://doi.org/10.1016/j.quascirev.2015.11.012

    Article  Google Scholar 

  • Varela V, Vlachogiannis D, Sfetsos A et al (2019) Projection of forest fire danger due to climate change in the french mediterranean region. Sustainability 11:4284

    Article  Google Scholar 

  • Vogiatzakis IN, Mannion AM, Sarris D (2016) Mediterranean island biodiversity and climate change: the last 10,000 years and the future. Biodivers Conserv 25:2597–2627

    Article  Google Scholar 

  • Wagner CEV, Forest P, Station E, et al (1987) Development and structure of the Canadian Forest FireWeather Index System. Can For Serv, Forestry Tech Rep

  • Watanabe M, Suzuki T, O’ishi R, et al (2010) Improved climate simulation by MIROC5: mean states, variability, and climate sensitivity. J Climate 23:6312–6335. https://doi.org/10.1175/2010JCLI3679.1

    Article  Google Scholar 

  • Watanabe S, Hajima T, Sudo K et al (2011) MIROC-ESM 2010: model description and basic results of CMIP5-20c3m experiments. Geoscientific Model Development 4:845

    Article  Google Scholar 

  • Westerling A, Hidalgo H, Cayan D, Swetnam T (2006) Warming and earlier spring increase western US forest wildfire activity. Science 313:940–943. https://doi.org/10.1126/science.1130691

    Article  Google Scholar 

  • YiMin TZBYY, Bo LWZLL, WenMin WPLZG, et al (2018) The FGOALS climate system model as a modeling tool for supporting climate sciences: an overview. Earth and Planetary Physics 2

Download references

Funding

This research was funded by the Région Bourgogne Franche-Comté through Chrono-environnement laboratory, the MSHE Ledoux and the projects ONOMAD, QMedFire, and ENVILEG led by BV. This study was also supported by the CNRS PaléoMEx-MISTRALS programme. This study is part of the PAGES-GPWG activities.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: CH and ML.

Methodology, validation, investigation, resources, writing—review and editing, and visualization: ML, BV, TC, IJB, and CH.

Formal analysis and data curation: ML and CH.

Writing—original draft preparation: ML.

Supervision: CH and BV.

Project administration and funding acquisition: BV.

Corresponding author

Correspondence to Marion Lestienne.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

All authors consent to publish in the journal of “Climatic Change”.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2187 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lestienne, M., Vannière, B., Curt, T. et al. Climate-driven Mediterranean fire hazard assessments for 2020–2100 on the light of past millennial variability. Climatic Change 170, 14 (2022). https://doi.org/10.1007/s10584-021-03258-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10584-021-03258-y

Keywords

Navigation